Characteristic Function of Gamma Distributed Random Variables
$begingroup$
I have the following characteristic function
$$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
$$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
$$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.
My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.
characteristic-functions gamma-distribution
$endgroup$
add a comment |
$begingroup$
I have the following characteristic function
$$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
$$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
$$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.
My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.
characteristic-functions gamma-distribution
$endgroup$
add a comment |
$begingroup$
I have the following characteristic function
$$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
$$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
$$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.
My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.
characteristic-functions gamma-distribution
$endgroup$
I have the following characteristic function
$$sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)},$$
where $i$ is the imaginary unit, $beta>0$, $Gamma(cdot)$ is the Gamma function and
$$sigma_{m,k} equiv frac{Gamma(beta+alpha)Gamma(beta+k)}{Gamma(beta + m)Gamma(beta + alpha + k)},$$
where $k$ can be any non-negative integer and $alpha > 0$ is another parameter. If there exists a $sigma_k > 0$ (a positive constant that does not depend on $m$, but can depend on $k$), such that
$$(star) qquad qquad sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{m,k} frac{Gamma(beta + m)}{Gamma(beta)} = sum_{m=0}^{infty} frac{(is)^m}{m!} sigma_{k}^m frac{Gamma(beta + m)}{Gamma(beta)}$$
then I know that the left hand side is the characteristic function of a Gamma distributed random variable with shape parameter $beta$ and scale parameter $sigma_k$, since the right hand-side is.
My Question: is it possible to show that there exists a $sigma_k$ so that $(star)$ is true? Is there some form of intermediate value theorem that I can appeal to here? Note that the sequence $sigma_{0,k}, sigma_{1,k}, ...$ is a decreasing sequence.
characteristic-functions gamma-distribution
characteristic-functions gamma-distribution
edited Dec 22 '18 at 13:22
SEJ
asked Dec 22 '18 at 7:50
SEJSEJ
184
184
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049204%2fcharacteristic-function-of-gamma-distributed-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049204%2fcharacteristic-function-of-gamma-distributed-random-variables%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown