limit of trigonometric function to infinity












0












$begingroup$


I'm facing a bit of trouble figuring out this limit.



$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$



and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.










share|cite|improve this question











$endgroup$












  • $begingroup$
    $ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
    $endgroup$
    – lab bhattacharjee
    Apr 28 '18 at 18:11










  • $begingroup$
    True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
    $endgroup$
    – user25758
    Apr 28 '18 at 18:20










  • $begingroup$
    Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
    $endgroup$
    – Cedron Dawg
    Apr 28 '18 at 19:06


















0












$begingroup$


I'm facing a bit of trouble figuring out this limit.



$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$



and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.










share|cite|improve this question











$endgroup$












  • $begingroup$
    $ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
    $endgroup$
    – lab bhattacharjee
    Apr 28 '18 at 18:11










  • $begingroup$
    True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
    $endgroup$
    – user25758
    Apr 28 '18 at 18:20










  • $begingroup$
    Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
    $endgroup$
    – Cedron Dawg
    Apr 28 '18 at 19:06
















0












0








0


2



$begingroup$


I'm facing a bit of trouble figuring out this limit.



$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$



and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.










share|cite|improve this question











$endgroup$




I'm facing a bit of trouble figuring out this limit.



$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$



and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 28 '18 at 19:31









an4s

2,0892418




2,0892418










asked Apr 28 '18 at 17:59









user25758user25758

306




306












  • $begingroup$
    $ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
    $endgroup$
    – lab bhattacharjee
    Apr 28 '18 at 18:11










  • $begingroup$
    True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
    $endgroup$
    – user25758
    Apr 28 '18 at 18:20










  • $begingroup$
    Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
    $endgroup$
    – Cedron Dawg
    Apr 28 '18 at 19:06




















  • $begingroup$
    $ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
    $endgroup$
    – lab bhattacharjee
    Apr 28 '18 at 18:11










  • $begingroup$
    True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
    $endgroup$
    – user25758
    Apr 28 '18 at 18:20










  • $begingroup$
    Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
    $endgroup$
    – Cedron Dawg
    Apr 28 '18 at 19:06


















$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11




$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11












$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20




$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20












$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06






$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06












1 Answer
1






active

oldest

votes


















1












$begingroup$

Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,




  • If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.

  • If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.


Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Simple and clear explanation +1
    $endgroup$
    – Paramanand Singh
    Dec 22 '18 at 7:33











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2757791%2flimit-of-trigonometric-function-to-infinity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,




  • If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.

  • If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.


Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Simple and clear explanation +1
    $endgroup$
    – Paramanand Singh
    Dec 22 '18 at 7:33
















1












$begingroup$

Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,




  • If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.

  • If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.


Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Simple and clear explanation +1
    $endgroup$
    – Paramanand Singh
    Dec 22 '18 at 7:33














1












1








1





$begingroup$

Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,




  • If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.

  • If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.


Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$






share|cite|improve this answer









$endgroup$



Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,




  • If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.

  • If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.


Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 22 '18 at 7:16









choco_addictedchoco_addicted

8,08261947




8,08261947












  • $begingroup$
    Simple and clear explanation +1
    $endgroup$
    – Paramanand Singh
    Dec 22 '18 at 7:33


















  • $begingroup$
    Simple and clear explanation +1
    $endgroup$
    – Paramanand Singh
    Dec 22 '18 at 7:33
















$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33




$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2757791%2flimit-of-trigonometric-function-to-infinity%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna