limit of trigonometric function to infinity
$begingroup$
I'm facing a bit of trouble figuring out this limit.
$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$
and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.
limits
$endgroup$
add a comment |
$begingroup$
I'm facing a bit of trouble figuring out this limit.
$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$
and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.
limits
$endgroup$
$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11
$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20
$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06
add a comment |
$begingroup$
I'm facing a bit of trouble figuring out this limit.
$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$
and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.
limits
$endgroup$
I'm facing a bit of trouble figuring out this limit.
$$ lim_{n to infty} cosleft(left(-1right)^n frac{n-1}{n+1}piright)$$
and I'm not sure if I can simply find the limit of the inner functions and then apply cosine to that, as in
$$ lim_{n to infty} (-1)^n = undefined quad quad lim_{n to infty} frac{n-1}{n+1} = 1 quad quad lim_{n to infty} pi = pi $$
But because of the oscillation caused by $displaystylelim_{n to infty} (-1)^n$, I am not sure what I should do. It would seem to me that the entire thing is undefined, but that is a bad answer.
limits
limits
edited Apr 28 '18 at 19:31
an4s
2,0892418
2,0892418
asked Apr 28 '18 at 17:59
user25758user25758
306
306
$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11
$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20
$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06
add a comment |
$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11
$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20
$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06
$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11
$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11
$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20
$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20
$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06
$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,
- If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
- If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$
$endgroup$
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2757791%2flimit-of-trigonometric-function-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,
- If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
- If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$
$endgroup$
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
add a comment |
$begingroup$
Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,
- If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
- If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$
$endgroup$
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
add a comment |
$begingroup$
Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,
- If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
- If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$
$endgroup$
Note that $cos$ is even; that is, $cos(x)=cos(-x)$ for any $xinmathbb{R}$. Thus,
- If $n$ is odd, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft((-1)^{n+1}frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
- If $n$ is even, then $cosleft((-1)^n frac{n-1}{n+1}piright)=cosleft(frac{n-1}{n+1}piright)$.
Therefore,
$$lim_{ntoinfty}cosleft((-1)^n frac{n-1}{n+1}piright)=lim_{ntoinfty}cosleft(frac{n-1}{n+1}piright)=cospi=-1.$$
answered Dec 22 '18 at 7:16
choco_addictedchoco_addicted
8,08261947
8,08261947
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
add a comment |
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
$begingroup$
Simple and clear explanation +1
$endgroup$
– Paramanand Singh
Dec 22 '18 at 7:33
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2757791%2flimit-of-trigonometric-function-to-infinity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$ntoinfty$ does not necessarily imply $n$ is an integer, for non integer $n,(-1)^n=?$
$endgroup$
– lab bhattacharjee
Apr 28 '18 at 18:11
$begingroup$
True. Then it would tend to oscillate. I'm not quite sure what I can do with that then. Thanks
$endgroup$
– user25758
Apr 28 '18 at 18:20
$begingroup$
Usually $n$ is used to denote an integer, so assuming it is, note that $cos(-pi)=cos(pi)=-1$.
$endgroup$
– Cedron Dawg
Apr 28 '18 at 19:06