Equality of perturbed Ramanujan's sum and -1/12












0












$begingroup$


Consider the series $sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)$. If one lets $varepsilon$ be small enough (for example 0.0001) and $n$ large enough (for example 1.000.000), one sees by numerical computations that this sum will converge to $-frac{1}{12}$. See also https://en.wikiversity.org/wiki/MATLAB/Divergent_series_investigations or test it by yourself using any programming language.



Besides this rather interesting fact, my question is now how to solve $varepsilon$ in terms of $n$ in the following equation $$sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)=-frac{1}{12}.$$ If one solves this, one can for example obtain sufficient conditions in order to apply zeta function regularization in areas where is made a lot of use of perturbed series (such as physics).



I tried to integrate both sides of the expression (w.r.t. $varepsilon$) but arrived at no interesting relationships so far. Maybe one does have heard of this expression, knows more about it or even know how to solve it for $varepsilon$?



See also my slightly related question Closed form expression for (periodic) generalized harmonic numbers? which might provide clearer insights.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Today's Ramanujan's bday btw ;)
    $endgroup$
    – Ankit Kumar
    Dec 22 '18 at 16:58










  • $begingroup$
    Hey yeah, I see! Nice coincidence :D!
    $endgroup$
    – Frozenharp
    Dec 22 '18 at 17:46










  • $begingroup$
    $sum_{k=0}^n k e^{-x k}2cos(x k) =frac{d}{dx} sum_{k=0}^n frac{1}{1+i}e^{-x (1+i) k}+frac{1}{1-i}e^{-x (1-i) k}) = frac{d}{dx}( frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}}) = ...$
    $endgroup$
    – reuns
    Dec 22 '18 at 23:21












  • $begingroup$
    I see that actually $frac{1}{6}=-sum_{k=0}^n 2ke^{-xk}cos(xk) = frac{d}{dx}(frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}})=-(frac{(n+1)e^{x(-i-1)(n+1)}(1-e^{x(-i-1)})-e^{x(-i-1)}(1-e^{x(-i-1)(n+1)})}{(1-e^{x(-i-1)})^2}+frac{(n+1)e^{x(i-1)(n+1)}(1-e^{x(i-1)})-e^{x(i-1)}(1-e^{x(i-1)(n+1)})}{(1-e^{x(i-1)})^2})$. I don't know how to reduce it to an expression in which we can solve it for $x$ however...
    $endgroup$
    – Frozenharp
    Dec 23 '18 at 15:03


















0












$begingroup$


Consider the series $sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)$. If one lets $varepsilon$ be small enough (for example 0.0001) and $n$ large enough (for example 1.000.000), one sees by numerical computations that this sum will converge to $-frac{1}{12}$. See also https://en.wikiversity.org/wiki/MATLAB/Divergent_series_investigations or test it by yourself using any programming language.



Besides this rather interesting fact, my question is now how to solve $varepsilon$ in terms of $n$ in the following equation $$sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)=-frac{1}{12}.$$ If one solves this, one can for example obtain sufficient conditions in order to apply zeta function regularization in areas where is made a lot of use of perturbed series (such as physics).



I tried to integrate both sides of the expression (w.r.t. $varepsilon$) but arrived at no interesting relationships so far. Maybe one does have heard of this expression, knows more about it or even know how to solve it for $varepsilon$?



See also my slightly related question Closed form expression for (periodic) generalized harmonic numbers? which might provide clearer insights.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Today's Ramanujan's bday btw ;)
    $endgroup$
    – Ankit Kumar
    Dec 22 '18 at 16:58










  • $begingroup$
    Hey yeah, I see! Nice coincidence :D!
    $endgroup$
    – Frozenharp
    Dec 22 '18 at 17:46










  • $begingroup$
    $sum_{k=0}^n k e^{-x k}2cos(x k) =frac{d}{dx} sum_{k=0}^n frac{1}{1+i}e^{-x (1+i) k}+frac{1}{1-i}e^{-x (1-i) k}) = frac{d}{dx}( frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}}) = ...$
    $endgroup$
    – reuns
    Dec 22 '18 at 23:21












  • $begingroup$
    I see that actually $frac{1}{6}=-sum_{k=0}^n 2ke^{-xk}cos(xk) = frac{d}{dx}(frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}})=-(frac{(n+1)e^{x(-i-1)(n+1)}(1-e^{x(-i-1)})-e^{x(-i-1)}(1-e^{x(-i-1)(n+1)})}{(1-e^{x(-i-1)})^2}+frac{(n+1)e^{x(i-1)(n+1)}(1-e^{x(i-1)})-e^{x(i-1)}(1-e^{x(i-1)(n+1)})}{(1-e^{x(i-1)})^2})$. I don't know how to reduce it to an expression in which we can solve it for $x$ however...
    $endgroup$
    – Frozenharp
    Dec 23 '18 at 15:03
















0












0








0





$begingroup$


Consider the series $sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)$. If one lets $varepsilon$ be small enough (for example 0.0001) and $n$ large enough (for example 1.000.000), one sees by numerical computations that this sum will converge to $-frac{1}{12}$. See also https://en.wikiversity.org/wiki/MATLAB/Divergent_series_investigations or test it by yourself using any programming language.



Besides this rather interesting fact, my question is now how to solve $varepsilon$ in terms of $n$ in the following equation $$sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)=-frac{1}{12}.$$ If one solves this, one can for example obtain sufficient conditions in order to apply zeta function regularization in areas where is made a lot of use of perturbed series (such as physics).



I tried to integrate both sides of the expression (w.r.t. $varepsilon$) but arrived at no interesting relationships so far. Maybe one does have heard of this expression, knows more about it or even know how to solve it for $varepsilon$?



See also my slightly related question Closed form expression for (periodic) generalized harmonic numbers? which might provide clearer insights.










share|cite|improve this question











$endgroup$




Consider the series $sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)$. If one lets $varepsilon$ be small enough (for example 0.0001) and $n$ large enough (for example 1.000.000), one sees by numerical computations that this sum will converge to $-frac{1}{12}$. See also https://en.wikiversity.org/wiki/MATLAB/Divergent_series_investigations or test it by yourself using any programming language.



Besides this rather interesting fact, my question is now how to solve $varepsilon$ in terms of $n$ in the following equation $$sum_{k=1}^n k e^{-varepsilon k}cos(varepsilon k)=-frac{1}{12}.$$ If one solves this, one can for example obtain sufficient conditions in order to apply zeta function regularization in areas where is made a lot of use of perturbed series (such as physics).



I tried to integrate both sides of the expression (w.r.t. $varepsilon$) but arrived at no interesting relationships so far. Maybe one does have heard of this expression, knows more about it or even know how to solve it for $varepsilon$?



See also my slightly related question Closed form expression for (periodic) generalized harmonic numbers? which might provide clearer insights.







calculus sequences-and-series complex-analysis problem-solving divergent-series






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 16:50







Frozenharp

















asked Dec 22 '18 at 16:42









FrozenharpFrozenharp

244




244








  • 1




    $begingroup$
    Today's Ramanujan's bday btw ;)
    $endgroup$
    – Ankit Kumar
    Dec 22 '18 at 16:58










  • $begingroup$
    Hey yeah, I see! Nice coincidence :D!
    $endgroup$
    – Frozenharp
    Dec 22 '18 at 17:46










  • $begingroup$
    $sum_{k=0}^n k e^{-x k}2cos(x k) =frac{d}{dx} sum_{k=0}^n frac{1}{1+i}e^{-x (1+i) k}+frac{1}{1-i}e^{-x (1-i) k}) = frac{d}{dx}( frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}}) = ...$
    $endgroup$
    – reuns
    Dec 22 '18 at 23:21












  • $begingroup$
    I see that actually $frac{1}{6}=-sum_{k=0}^n 2ke^{-xk}cos(xk) = frac{d}{dx}(frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}})=-(frac{(n+1)e^{x(-i-1)(n+1)}(1-e^{x(-i-1)})-e^{x(-i-1)}(1-e^{x(-i-1)(n+1)})}{(1-e^{x(-i-1)})^2}+frac{(n+1)e^{x(i-1)(n+1)}(1-e^{x(i-1)})-e^{x(i-1)}(1-e^{x(i-1)(n+1)})}{(1-e^{x(i-1)})^2})$. I don't know how to reduce it to an expression in which we can solve it for $x$ however...
    $endgroup$
    – Frozenharp
    Dec 23 '18 at 15:03
















  • 1




    $begingroup$
    Today's Ramanujan's bday btw ;)
    $endgroup$
    – Ankit Kumar
    Dec 22 '18 at 16:58










  • $begingroup$
    Hey yeah, I see! Nice coincidence :D!
    $endgroup$
    – Frozenharp
    Dec 22 '18 at 17:46










  • $begingroup$
    $sum_{k=0}^n k e^{-x k}2cos(x k) =frac{d}{dx} sum_{k=0}^n frac{1}{1+i}e^{-x (1+i) k}+frac{1}{1-i}e^{-x (1-i) k}) = frac{d}{dx}( frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}}) = ...$
    $endgroup$
    – reuns
    Dec 22 '18 at 23:21












  • $begingroup$
    I see that actually $frac{1}{6}=-sum_{k=0}^n 2ke^{-xk}cos(xk) = frac{d}{dx}(frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}})=-(frac{(n+1)e^{x(-i-1)(n+1)}(1-e^{x(-i-1)})-e^{x(-i-1)}(1-e^{x(-i-1)(n+1)})}{(1-e^{x(-i-1)})^2}+frac{(n+1)e^{x(i-1)(n+1)}(1-e^{x(i-1)})-e^{x(i-1)}(1-e^{x(i-1)(n+1)})}{(1-e^{x(i-1)})^2})$. I don't know how to reduce it to an expression in which we can solve it for $x$ however...
    $endgroup$
    – Frozenharp
    Dec 23 '18 at 15:03










1




1




$begingroup$
Today's Ramanujan's bday btw ;)
$endgroup$
– Ankit Kumar
Dec 22 '18 at 16:58




$begingroup$
Today's Ramanujan's bday btw ;)
$endgroup$
– Ankit Kumar
Dec 22 '18 at 16:58












$begingroup$
Hey yeah, I see! Nice coincidence :D!
$endgroup$
– Frozenharp
Dec 22 '18 at 17:46




$begingroup$
Hey yeah, I see! Nice coincidence :D!
$endgroup$
– Frozenharp
Dec 22 '18 at 17:46












$begingroup$
$sum_{k=0}^n k e^{-x k}2cos(x k) =frac{d}{dx} sum_{k=0}^n frac{1}{1+i}e^{-x (1+i) k}+frac{1}{1-i}e^{-x (1-i) k}) = frac{d}{dx}( frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}}) = ...$
$endgroup$
– reuns
Dec 22 '18 at 23:21






$begingroup$
$sum_{k=0}^n k e^{-x k}2cos(x k) =frac{d}{dx} sum_{k=0}^n frac{1}{1+i}e^{-x (1+i) k}+frac{1}{1-i}e^{-x (1-i) k}) = frac{d}{dx}( frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}}) = ...$
$endgroup$
– reuns
Dec 22 '18 at 23:21














$begingroup$
I see that actually $frac{1}{6}=-sum_{k=0}^n 2ke^{-xk}cos(xk) = frac{d}{dx}(frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}})=-(frac{(n+1)e^{x(-i-1)(n+1)}(1-e^{x(-i-1)})-e^{x(-i-1)}(1-e^{x(-i-1)(n+1)})}{(1-e^{x(-i-1)})^2}+frac{(n+1)e^{x(i-1)(n+1)}(1-e^{x(i-1)})-e^{x(i-1)}(1-e^{x(i-1)(n+1)})}{(1-e^{x(i-1)})^2})$. I don't know how to reduce it to an expression in which we can solve it for $x$ however...
$endgroup$
– Frozenharp
Dec 23 '18 at 15:03






$begingroup$
I see that actually $frac{1}{6}=-sum_{k=0}^n 2ke^{-xk}cos(xk) = frac{d}{dx}(frac{1}{1+i}frac{1-e^{-x(1+i)(n+1)}}{1-e^{-x(1+i)}}+frac{1}{1-i}frac{1-e^{-x(1-i)(n+1)}}{1-e^{-x(1-i)}})=-(frac{(n+1)e^{x(-i-1)(n+1)}(1-e^{x(-i-1)})-e^{x(-i-1)}(1-e^{x(-i-1)(n+1)})}{(1-e^{x(-i-1)})^2}+frac{(n+1)e^{x(i-1)(n+1)}(1-e^{x(i-1)})-e^{x(i-1)}(1-e^{x(i-1)(n+1)})}{(1-e^{x(i-1)})^2})$. I don't know how to reduce it to an expression in which we can solve it for $x$ however...
$endgroup$
– Frozenharp
Dec 23 '18 at 15:03












0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049623%2fequality-of-perturbed-ramanujans-sum-and-1-12%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3049623%2fequality-of-perturbed-ramanujans-sum-and-1-12%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna