How to prove the following by Cauchy-Schwarz? [duplicate]












2












$begingroup$



This question already has an answer here:




  • Let $f:[0;1]tomathbb R$ be continiously differentiable [closed]

    2 answers




If



$u(x) in C([a, b]), u(a) = 0,; u(x) = int_{a}^{x}u^{'}(t)dt$



then



$int_{a}^{b} |u|^{2} dx le frac{1}{2}(b - a)^{2}int_{a}^{b}|u^{'}(t)|^{2}dt$



The book said it can be proved using cauchy-schwarz-inequality, but I cannot make it.










share|cite|improve this question











$endgroup$



marked as duplicate by Martin R, mrtaurho, idm, Macavity inequality
Users with the  inequality badge can single-handedly close inequality questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 22 '18 at 18:45


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 16:47










  • $begingroup$
    There is no conclusion after ‘then’, only a formula.
    $endgroup$
    – Bernard
    Dec 22 '18 at 16:52
















2












$begingroup$



This question already has an answer here:




  • Let $f:[0;1]tomathbb R$ be continiously differentiable [closed]

    2 answers




If



$u(x) in C([a, b]), u(a) = 0,; u(x) = int_{a}^{x}u^{'}(t)dt$



then



$int_{a}^{b} |u|^{2} dx le frac{1}{2}(b - a)^{2}int_{a}^{b}|u^{'}(t)|^{2}dt$



The book said it can be proved using cauchy-schwarz-inequality, but I cannot make it.










share|cite|improve this question











$endgroup$



marked as duplicate by Martin R, mrtaurho, idm, Macavity inequality
Users with the  inequality badge can single-handedly close inequality questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 22 '18 at 18:45


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.


















  • $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 16:47










  • $begingroup$
    There is no conclusion after ‘then’, only a formula.
    $endgroup$
    – Bernard
    Dec 22 '18 at 16:52














2












2








2





$begingroup$



This question already has an answer here:




  • Let $f:[0;1]tomathbb R$ be continiously differentiable [closed]

    2 answers




If



$u(x) in C([a, b]), u(a) = 0,; u(x) = int_{a}^{x}u^{'}(t)dt$



then



$int_{a}^{b} |u|^{2} dx le frac{1}{2}(b - a)^{2}int_{a}^{b}|u^{'}(t)|^{2}dt$



The book said it can be proved using cauchy-schwarz-inequality, but I cannot make it.










share|cite|improve this question











$endgroup$





This question already has an answer here:




  • Let $f:[0;1]tomathbb R$ be continiously differentiable [closed]

    2 answers




If



$u(x) in C([a, b]), u(a) = 0,; u(x) = int_{a}^{x}u^{'}(t)dt$



then



$int_{a}^{b} |u|^{2} dx le frac{1}{2}(b - a)^{2}int_{a}^{b}|u^{'}(t)|^{2}dt$



The book said it can be proved using cauchy-schwarz-inequality, but I cannot make it.





This question already has an answer here:




  • Let $f:[0;1]tomathbb R$ be continiously differentiable [closed]

    2 answers








inequality cauchy-schwarz-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 22 '18 at 17:10









J.G.

25.6k22539




25.6k22539










asked Dec 22 '18 at 16:46









BluedropsBluedrops

136




136




marked as duplicate by Martin R, mrtaurho, idm, Macavity inequality
Users with the  inequality badge can single-handedly close inequality questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 22 '18 at 18:45


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Martin R, mrtaurho, idm, Macavity inequality
Users with the  inequality badge can single-handedly close inequality questions as duplicates and reopen them as needed.

StackExchange.ready(function() {
if (StackExchange.options.isMobile) return;

$('.dupe-hammer-message-hover:not(.hover-bound)').each(function() {
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');

$hover.hover(
function() {
$hover.showInfoMessage('', {
messageElement: $msg.clone().show(),
transient: false,
position: { my: 'bottom left', at: 'top center', offsetTop: -7 },
dismissable: false,
relativeToBody: true
});
},
function() {
StackExchange.helpers.removeMessages();
}
);
});
});
Dec 22 '18 at 18:45


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.














  • $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 16:47










  • $begingroup$
    There is no conclusion after ‘then’, only a formula.
    $endgroup$
    – Bernard
    Dec 22 '18 at 16:52


















  • $begingroup$
    Please see math.meta.stackexchange.com/questions/5020
    $endgroup$
    – Lord Shark the Unknown
    Dec 22 '18 at 16:47










  • $begingroup$
    There is no conclusion after ‘then’, only a formula.
    $endgroup$
    – Bernard
    Dec 22 '18 at 16:52
















$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 16:47




$begingroup$
Please see math.meta.stackexchange.com/questions/5020
$endgroup$
– Lord Shark the Unknown
Dec 22 '18 at 16:47












$begingroup$
There is no conclusion after ‘then’, only a formula.
$endgroup$
– Bernard
Dec 22 '18 at 16:52




$begingroup$
There is no conclusion after ‘then’, only a formula.
$endgroup$
– Bernard
Dec 22 '18 at 16:52










1 Answer
1






active

oldest

votes


















1












$begingroup$

One long line proves it: $$int_a^b |u(t)|^2 dt=int_a^bleft|int_a^t 1cdot u'(t')dt'right|^2 dtleint_a^bleft[int_a^t 1^2 dt'cdotint_a^t |u'(t')|^2dt'right] dt\leint_a^bleft[(t-a)cdotint_a^b |u'(t')|^2dt'right] dt=frac{(b-a)^2}{2}int_a^b |u'(t')|^2dt'.$$The first $le$ uses Cauchy-Schwarz; the second replaces an $int_a^t dt'$ with $int_a^b dt'$.






share|cite|improve this answer









$endgroup$




















    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    One long line proves it: $$int_a^b |u(t)|^2 dt=int_a^bleft|int_a^t 1cdot u'(t')dt'right|^2 dtleint_a^bleft[int_a^t 1^2 dt'cdotint_a^t |u'(t')|^2dt'right] dt\leint_a^bleft[(t-a)cdotint_a^b |u'(t')|^2dt'right] dt=frac{(b-a)^2}{2}int_a^b |u'(t')|^2dt'.$$The first $le$ uses Cauchy-Schwarz; the second replaces an $int_a^t dt'$ with $int_a^b dt'$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      One long line proves it: $$int_a^b |u(t)|^2 dt=int_a^bleft|int_a^t 1cdot u'(t')dt'right|^2 dtleint_a^bleft[int_a^t 1^2 dt'cdotint_a^t |u'(t')|^2dt'right] dt\leint_a^bleft[(t-a)cdotint_a^b |u'(t')|^2dt'right] dt=frac{(b-a)^2}{2}int_a^b |u'(t')|^2dt'.$$The first $le$ uses Cauchy-Schwarz; the second replaces an $int_a^t dt'$ with $int_a^b dt'$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        One long line proves it: $$int_a^b |u(t)|^2 dt=int_a^bleft|int_a^t 1cdot u'(t')dt'right|^2 dtleint_a^bleft[int_a^t 1^2 dt'cdotint_a^t |u'(t')|^2dt'right] dt\leint_a^bleft[(t-a)cdotint_a^b |u'(t')|^2dt'right] dt=frac{(b-a)^2}{2}int_a^b |u'(t')|^2dt'.$$The first $le$ uses Cauchy-Schwarz; the second replaces an $int_a^t dt'$ with $int_a^b dt'$.






        share|cite|improve this answer









        $endgroup$



        One long line proves it: $$int_a^b |u(t)|^2 dt=int_a^bleft|int_a^t 1cdot u'(t')dt'right|^2 dtleint_a^bleft[int_a^t 1^2 dt'cdotint_a^t |u'(t')|^2dt'right] dt\leint_a^bleft[(t-a)cdotint_a^b |u'(t')|^2dt'right] dt=frac{(b-a)^2}{2}int_a^b |u'(t')|^2dt'.$$The first $le$ uses Cauchy-Schwarz; the second replaces an $int_a^t dt'$ with $int_a^b dt'$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 22 '18 at 17:06









        J.G.J.G.

        25.6k22539




        25.6k22539















            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna