Surface integral over a cone above the xy plane












1












$begingroup$


From Schaum's vector analysis



enter image description here



My approach:



First, parametrize the equation $x^2 +y^2 = z^2 $



$ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$



Then,



$vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$



$vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$



Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$



$ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$



Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$



$ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$



then,



$ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$



= $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$



Finally,



$ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $



However the answer is $320 pi$ , why? Where did I go wrong? Thanks.



enter image description here










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    From Schaum's vector analysis



    enter image description here



    My approach:



    First, parametrize the equation $x^2 +y^2 = z^2 $



    $ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$



    Then,



    $vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$



    $vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$



    Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$



    $ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$



    Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$



    $ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$



    then,



    $ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$



    = $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$



    Finally,



    $ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $



    However the answer is $320 pi$ , why? Where did I go wrong? Thanks.



    enter image description here










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      From Schaum's vector analysis



      enter image description here



      My approach:



      First, parametrize the equation $x^2 +y^2 = z^2 $



      $ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$



      Then,



      $vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$



      $vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$



      Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$



      $ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$



      Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$



      $ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$



      then,



      $ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$



      = $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$



      Finally,



      $ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $



      However the answer is $320 pi$ , why? Where did I go wrong? Thanks.



      enter image description here










      share|cite|improve this question









      $endgroup$




      From Schaum's vector analysis



      enter image description here



      My approach:



      First, parametrize the equation $x^2 +y^2 = z^2 $



      $ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$



      Then,



      $vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$



      $vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$



      Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$



      $ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$



      Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$



      $ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$



      then,



      $ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$



      = $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$



      Finally,



      $ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $



      However the answer is $320 pi$ , why? Where did I go wrong? Thanks.



      enter image description here







      vector-analysis surface-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 27 '18 at 15:53









      khaled014zkhaled014z

      1749




      1749






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with



          $$
          hat{n} = hat{z}
          $$



          So that



          $$
          int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
          $$



          So the total integral is



          $$
          192pi + 128pi = 320pi
          $$






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
            $endgroup$
            – khaled014z
            Dec 27 '18 at 16:27



















          0












          $begingroup$

          As you probably know, you can use the divergence theorem.



          The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
          $$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
          The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.



          We have
          $$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$



          Hence the entire integral is $320pi$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054082%2fsurface-integral-over-a-cone-above-the-xy-plane%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with



            $$
            hat{n} = hat{z}
            $$



            So that



            $$
            int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
            $$



            So the total integral is



            $$
            192pi + 128pi = 320pi
            $$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
              $endgroup$
              – khaled014z
              Dec 27 '18 at 16:27
















            1












            $begingroup$

            The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with



            $$
            hat{n} = hat{z}
            $$



            So that



            $$
            int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
            $$



            So the total integral is



            $$
            192pi + 128pi = 320pi
            $$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
              $endgroup$
              – khaled014z
              Dec 27 '18 at 16:27














            1












            1








            1





            $begingroup$

            The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with



            $$
            hat{n} = hat{z}
            $$



            So that



            $$
            int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
            $$



            So the total integral is



            $$
            192pi + 128pi = 320pi
            $$






            share|cite|improve this answer









            $endgroup$



            The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with



            $$
            hat{n} = hat{z}
            $$



            So that



            $$
            int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
            $$



            So the total integral is



            $$
            192pi + 128pi = 320pi
            $$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 27 '18 at 16:13









            caveraccaverac

            14.6k31130




            14.6k31130












            • $begingroup$
              Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
              $endgroup$
              – khaled014z
              Dec 27 '18 at 16:27


















            • $begingroup$
              Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
              $endgroup$
              – khaled014z
              Dec 27 '18 at 16:27
















            $begingroup$
            Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
            $endgroup$
            – khaled014z
            Dec 27 '18 at 16:27




            $begingroup$
            Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
            $endgroup$
            – khaled014z
            Dec 27 '18 at 16:27











            0












            $begingroup$

            As you probably know, you can use the divergence theorem.



            The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
            $$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
            The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.



            We have
            $$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$



            Hence the entire integral is $320pi$.






            share|cite|improve this answer









            $endgroup$


















              0












              $begingroup$

              As you probably know, you can use the divergence theorem.



              The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
              $$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
              The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.



              We have
              $$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$



              Hence the entire integral is $320pi$.






              share|cite|improve this answer









              $endgroup$
















                0












                0








                0





                $begingroup$

                As you probably know, you can use the divergence theorem.



                The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
                $$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
                The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.



                We have
                $$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$



                Hence the entire integral is $320pi$.






                share|cite|improve this answer









                $endgroup$



                As you probably know, you can use the divergence theorem.



                The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
                $$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
                The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.



                We have
                $$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$



                Hence the entire integral is $320pi$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 29 '18 at 18:34









                mechanodroidmechanodroid

                27.6k62447




                27.6k62447






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054082%2fsurface-integral-over-a-cone-above-the-xy-plane%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna