Surface integral over a cone above the xy plane
$begingroup$
From Schaum's vector analysis
My approach:
First, parametrize the equation $x^2 +y^2 = z^2 $
$ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$
Then,
$vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$
$vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$
Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$
$ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$
Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$
$ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$
then,
$ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$
= $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$
Finally,
$ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $
However the answer is $320 pi$ , why? Where did I go wrong? Thanks.
vector-analysis surface-integrals
$endgroup$
add a comment |
$begingroup$
From Schaum's vector analysis
My approach:
First, parametrize the equation $x^2 +y^2 = z^2 $
$ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$
Then,
$vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$
$vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$
Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$
$ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$
Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$
$ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$
then,
$ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$
= $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$
Finally,
$ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $
However the answer is $320 pi$ , why? Where did I go wrong? Thanks.
vector-analysis surface-integrals
$endgroup$
add a comment |
$begingroup$
From Schaum's vector analysis
My approach:
First, parametrize the equation $x^2 +y^2 = z^2 $
$ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$
Then,
$vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$
$vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$
Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$
$ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$
Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$
$ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$
then,
$ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$
= $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$
Finally,
$ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $
However the answer is $320 pi$ , why? Where did I go wrong? Thanks.
vector-analysis surface-integrals
$endgroup$
From Schaum's vector analysis
My approach:
First, parametrize the equation $x^2 +y^2 = z^2 $
$ x = rho cos phi$ , $y= rho sinphi$ , $z= rho$
Then,
$vec A = 4 rho^2 cos phi hat i + rho^4 cos phi sin phi hat j + 3 rho hat k$
$vec n = nabla S = 2x hat i + 2y hat j - 2z hat k$
Then the unit normal $ hat n = frac {1}{sqrt 2} ( cos phi hat i + sin phi hat j - hat k)$
$ vec A . hat n = frac {1}{sqrt 2} ( 4 rho^2 cos^2 phi + rho^4 cos phi sin^2 phi - 3 rho)$
Surface area projection: $dS = frac {dxdy}{| hat n . hat k|} = sqrt 2 dxdy = sqrt 2 rho d rho d phi$
$ iint_S vec A . hat n dS = iint_0^4 (4 rho^3 cos^2 phi + rho^5 cos phi sin^2 phi - 3 rho^2) d phi = int_0^{2 pi} [ rho^4 cos^2 phi + frac { rho^6}{6} cos phi sin^2 phi - rho^3 ] d phi$
then,
$ iint_S vec A . hat n dS = rho^4 [ int_0^{2 pi} cos^2 phi d phi + frac { rho^6}{6} int_0^{2 pi} cos phi sin^2 phi d phi - rho^3 int_0^{2 pi} d phi$
= $ frac { rho^4}{2} [ phi + frac {sin 2 phi}{2} ] - rho^3 [phi]$ , $ phi in [0, 2pi]$
Finally,
$ iint_S vec A . hat n dS = 2 pi [ frac {256}{2} - 64 ] = 128 pi $
However the answer is $320 pi$ , why? Where did I go wrong? Thanks.
vector-analysis surface-integrals
vector-analysis surface-integrals
asked Dec 27 '18 at 15:53
khaled014zkhaled014z
1749
1749
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with
$$
hat{n} = hat{z}
$$
So that
$$
int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
$$
So the total integral is
$$
192pi + 128pi = 320pi
$$
$endgroup$
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
add a comment |
$begingroup$
As you probably know, you can use the divergence theorem.
The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
$$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.
We have
$$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$
Hence the entire integral is $320pi$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054082%2fsurface-integral-over-a-cone-above-the-xy-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with
$$
hat{n} = hat{z}
$$
So that
$$
int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
$$
So the total integral is
$$
192pi + 128pi = 320pi
$$
$endgroup$
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
add a comment |
$begingroup$
The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with
$$
hat{n} = hat{z}
$$
So that
$$
int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
$$
So the total integral is
$$
192pi + 128pi = 320pi
$$
$endgroup$
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
add a comment |
$begingroup$
The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with
$$
hat{n} = hat{z}
$$
So that
$$
int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
$$
So the total integral is
$$
192pi + 128pi = 320pi
$$
$endgroup$
The problem says "the entire surface". You need to calculate the surface integral over the plane $z = 4$, $rho leq 4$ and $0leq phi leq 2pi$. It is just a matter of repeating the same you did already with
$$
hat{n} = hat{z}
$$
So that
$$
int {bf A}cdot {rm d}^2{bf S} = int 12r{rm d}phi {rm d}rho = 192pi
$$
So the total integral is
$$
192pi + 128pi = 320pi
$$
answered Dec 27 '18 at 16:13
caveraccaverac
14.6k31130
14.6k31130
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
add a comment |
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
$begingroup$
Thank you! Can you please check out math.stackexchange.com/questions/3053525/… please?
$endgroup$
– khaled014z
Dec 27 '18 at 16:27
add a comment |
$begingroup$
As you probably know, you can use the divergence theorem.
The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
$$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.
We have
$$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$
Hence the entire integral is $320pi$.
$endgroup$
add a comment |
$begingroup$
As you probably know, you can use the divergence theorem.
The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
$$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.
We have
$$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$
Hence the entire integral is $320pi$.
$endgroup$
add a comment |
$begingroup$
As you probably know, you can use the divergence theorem.
The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
$$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.
We have
$$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$
Hence the entire integral is $320pi$.
$endgroup$
As you probably know, you can use the divergence theorem.
The surface integral over the cone and the plane transforms to the volume integral over the interior of the cone. We have $operatorname{div} mathbf{A} = 4z+xz^2+3$ so
$$intlimits_{text{surface of cone}} mathbf{A}cdot dmathbf{S} = intlimits_{text{volume of cone}}operatorname{div} mathbf{A} ,dV = intlimits_{text{volume of cone}}(4z+xz^2+3) ,dV$$
The integral of $xz^2$ vanishes because of symmetry, and the integral of $3$ is just three times the volume of the cone, or $64pi$.
We have
$$intlimits_{text{volume of cone}}4z,dV = 4int_{phi = 0}^{2pi}int_{z = 0}^4int_{rho = 0}^z z, rho,drho,dz,dphi = 8pi int_{z=0}^4 frac{z^3}2,dz = 4^4pi = 256pi$$
Hence the entire integral is $320pi$.
answered Dec 29 '18 at 18:34
mechanodroidmechanodroid
27.6k62447
27.6k62447
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054082%2fsurface-integral-over-a-cone-above-the-xy-plane%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown