Use the renewal equation to show that the renewal function of a Poisson process












1












$begingroup$


Use the renewal equation to show that the renewal function of a
Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Use the renewal equation to show that the renewal function of a
    Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Use the renewal equation to show that the renewal function of a
      Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.










      share|cite|improve this question











      $endgroup$




      Use the renewal equation to show that the renewal function of a
      Poisson process with rate $lambda > 0$ is $m(t) = lambda t$.







      stochastic-processes poisson-process






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 21 '18 at 17:55









      Math1000

      19.1k31745




      19.1k31745










      asked Dec 5 '15 at 5:15









      zxc123zxc123

      62




      62






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
          begin{align}
          m(t) &= F(t) + Fstar m(t)\
          &= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
          &= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
          end{align}
          (with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
          $$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
          and after differentiating with respect to $t$ we have
          $$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1560604%2fuse-the-renewal-equation-to-show-that-the-renewal-function-of-a-poisson-process%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
            begin{align}
            m(t) &= F(t) + Fstar m(t)\
            &= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
            &= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
            end{align}
            (with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
            $$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
            and after differentiating with respect to $t$ we have
            $$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
              begin{align}
              m(t) &= F(t) + Fstar m(t)\
              &= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
              &= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
              end{align}
              (with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
              $$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
              and after differentiating with respect to $t$ we have
              $$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
                begin{align}
                m(t) &= F(t) + Fstar m(t)\
                &= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
                &= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
                end{align}
                (with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
                $$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
                and after differentiating with respect to $t$ we have
                $$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.






                share|cite|improve this answer









                $endgroup$



                The interrenewal distribution is exponential with rate $lambda$, so $F(t)=1-e^{-lambda t}$ and so the renewal equation gives us
                begin{align}
                m(t) &= F(t) + Fstar m(t)\
                &= 1-e^{-lambda t} + int_0^t m(t-s)lambda e^{-lambda(s)} mathsf ds\
                &= 1-e^{-lambda t} + lambda e^{-lambda t}int_0^t m(x)e^{lambda x} mathsf dx
                end{align}
                (with the substitution $x=t-s$). Multiplying by $e^{lambda t}$ yields
                $$e^{lambda t}m(t) = e^{lambda t} -1 +lambdaint_0^t m(x)e^{lambda x} mathsf dx, $$
                and after differentiating with respect to $t$ we have
                $$lambda e^{lambda t}m(t) + e^{lambda t}m'(t) = lambda e^{lambda t}+lambda e^{lambda t}m(t). $$ Therefore $m'(t)=lambda$, and as $m(0)=0$, it follows that $m(t)=lambda t$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 23 '16 at 0:48









                Math1000Math1000

                19.1k31745




                19.1k31745






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1560604%2fuse-the-renewal-equation-to-show-that-the-renewal-function-of-a-poisson-process%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna