Inverse Laplace transform of $frac1{s^{1/2}(s^2 + 1)}$












0












$begingroup$


I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:



$cos(omega t)*t^{1/2} $



Where $*$ is the convolution product.



I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:



$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$



I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:



$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    $mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 21 '18 at 20:25












  • $begingroup$
    Thanks, helped a lot!
    $endgroup$
    – user4642
    Dec 21 '18 at 20:44
















0












$begingroup$


I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:



$cos(omega t)*t^{1/2} $



Where $*$ is the convolution product.



I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:



$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$



I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:



$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    $mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 21 '18 at 20:25












  • $begingroup$
    Thanks, helped a lot!
    $endgroup$
    – user4642
    Dec 21 '18 at 20:44














0












0








0





$begingroup$


I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:



$cos(omega t)*t^{1/2} $



Where $*$ is the convolution product.



I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:



$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$



I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:



$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$










share|cite|improve this question











$endgroup$




I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:



$cos(omega t)*t^{1/2} $



Where $*$ is the convolution product.



I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:



$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$



I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:



$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$







laplace-transform fractional-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 21 '18 at 20:23









Lorenzo B.

1,8402520




1,8402520










asked Dec 21 '18 at 19:35









user4642user4642

362




362












  • $begingroup$
    $mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 21 '18 at 20:25












  • $begingroup$
    Thanks, helped a lot!
    $endgroup$
    – user4642
    Dec 21 '18 at 20:44


















  • $begingroup$
    $mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
    $endgroup$
    – Mariusz Iwaniuk
    Dec 21 '18 at 20:25












  • $begingroup$
    Thanks, helped a lot!
    $endgroup$
    – user4642
    Dec 21 '18 at 20:44
















$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25






$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25














$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44




$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44










2 Answers
2






active

oldest

votes


















1












$begingroup$

The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write



$$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$



Laplace transform of the power function is



$$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$



so identifying $n = 2k + 1/2$, we have



$$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
&= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
&= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
&= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$



The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore



$$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
&= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
&= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
    $$D^{1/2} sin omega t =
    frac omega {sqrt pi}
    int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
    frac {omega sin omega t} {sqrt pi}
    int_0^t frac {sin omega tau} {sqrt tau} dtau +
    frac {omega cos omega t} {sqrt pi}
    int_0^t frac {cos omega tau} {sqrt tau} dtau = \
    2 sqrt{frac omega pi}
    ,(S(sqrt{omega t}) sin omega t +
    C(sqrt{omega t}) cos omega t),$$

    where $S$ and $C$ are the Fresnel integrals.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
      $endgroup$
      – user4642
      Dec 24 '18 at 23:29











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048828%2finverse-laplace-transform-of-frac1s1-2s2-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write



    $$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$



    Laplace transform of the power function is



    $$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$



    so identifying $n = 2k + 1/2$, we have



    $$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
    &= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
    &= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
    &= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$



    The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore



    $$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
    &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
    &= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write



      $$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$



      Laplace transform of the power function is



      $$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$



      so identifying $n = 2k + 1/2$, we have



      $$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
      &= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
      &= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
      &= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$



      The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore



      $$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
      &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
      &= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write



        $$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$



        Laplace transform of the power function is



        $$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$



        so identifying $n = 2k + 1/2$, we have



        $$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
        &= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
        &= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
        &= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$



        The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore



        $$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
        &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
        &= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$






        share|cite|improve this answer









        $endgroup$



        The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write



        $$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$



        Laplace transform of the power function is



        $$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$



        so identifying $n = 2k + 1/2$, we have



        $$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
        &= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
        &= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
        &= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$



        The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore



        $$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
        &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
        &= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 21 '18 at 21:06









        IninterrompueIninterrompue

        65019




        65019























            0












            $begingroup$

            There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
            $$D^{1/2} sin omega t =
            frac omega {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
            frac {omega sin omega t} {sqrt pi}
            int_0^t frac {sin omega tau} {sqrt tau} dtau +
            frac {omega cos omega t} {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt tau} dtau = \
            2 sqrt{frac omega pi}
            ,(S(sqrt{omega t}) sin omega t +
            C(sqrt{omega t}) cos omega t),$$

            where $S$ and $C$ are the Fresnel integrals.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
              $endgroup$
              – user4642
              Dec 24 '18 at 23:29
















            0












            $begingroup$

            There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
            $$D^{1/2} sin omega t =
            frac omega {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
            frac {omega sin omega t} {sqrt pi}
            int_0^t frac {sin omega tau} {sqrt tau} dtau +
            frac {omega cos omega t} {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt tau} dtau = \
            2 sqrt{frac omega pi}
            ,(S(sqrt{omega t}) sin omega t +
            C(sqrt{omega t}) cos omega t),$$

            where $S$ and $C$ are the Fresnel integrals.






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
              $endgroup$
              – user4642
              Dec 24 '18 at 23:29














            0












            0








            0





            $begingroup$

            There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
            $$D^{1/2} sin omega t =
            frac omega {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
            frac {omega sin omega t} {sqrt pi}
            int_0^t frac {sin omega tau} {sqrt tau} dtau +
            frac {omega cos omega t} {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt tau} dtau = \
            2 sqrt{frac omega pi}
            ,(S(sqrt{omega t}) sin omega t +
            C(sqrt{omega t}) cos omega t),$$

            where $S$ and $C$ are the Fresnel integrals.






            share|cite|improve this answer









            $endgroup$



            There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
            $$D^{1/2} sin omega t =
            frac omega {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
            frac {omega sin omega t} {sqrt pi}
            int_0^t frac {sin omega tau} {sqrt tau} dtau +
            frac {omega cos omega t} {sqrt pi}
            int_0^t frac {cos omega tau} {sqrt tau} dtau = \
            2 sqrt{frac omega pi}
            ,(S(sqrt{omega t}) sin omega t +
            C(sqrt{omega t}) cos omega t),$$

            where $S$ and $C$ are the Fresnel integrals.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Dec 22 '18 at 14:55









            MaximMaxim

            5,1631219




            5,1631219












            • $begingroup$
              I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
              $endgroup$
              – user4642
              Dec 24 '18 at 23:29


















            • $begingroup$
              I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
              $endgroup$
              – user4642
              Dec 24 '18 at 23:29
















            $begingroup$
            I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
            $endgroup$
            – user4642
            Dec 24 '18 at 23:29




            $begingroup$
            I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
            $endgroup$
            – user4642
            Dec 24 '18 at 23:29


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048828%2finverse-laplace-transform-of-frac1s1-2s2-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna