Inverse Laplace transform of $frac1{s^{1/2}(s^2 + 1)}$
$begingroup$
I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:
$cos(omega t)*t^{1/2} $
Where $*$ is the convolution product.
I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:
$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$
I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:
$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$
laplace-transform fractional-calculus
$endgroup$
add a comment |
$begingroup$
I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:
$cos(omega t)*t^{1/2} $
Where $*$ is the convolution product.
I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:
$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$
I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:
$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$
laplace-transform fractional-calculus
$endgroup$
$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25
$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44
add a comment |
$begingroup$
I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:
$cos(omega t)*t^{1/2} $
Where $*$ is the convolution product.
I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:
$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$
I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:
$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$
laplace-transform fractional-calculus
$endgroup$
I was studying about Caputo Fractional Derivative for a scientific project and I was trying determine the 1/2 order derivative in Caputo-Sense of $sin(omega t)$.
Throughout the development of the expression, I've found the following expression to calculate:
$cos(omega t)*t^{1/2} $
Where $*$ is the convolution product.
I thought that applying Laplace Transform it would be easy to solve, but I got the following expression after applying Laplace Transform:
$$frac{sqrt{pi} cdot s^{1/2}}{(s^2 + omega ^2)}$$
I've tried to use the matlab symbolic math toolbox to solve this, but it can't solve. I want to know a way to solve this. Or solve the original expression of the fractional derivative, which is:
$$(D^alpha _{0} sin(omega t))(t) = frac{-omega}{Gamma(1/2)}int_0^x cos(omega t)(x-t)^{-1/2}mathrm dt$$
laplace-transform fractional-calculus
laplace-transform fractional-calculus
edited Dec 21 '18 at 20:23
Lorenzo B.
1,8402520
1,8402520
asked Dec 21 '18 at 19:35
user4642user4642
362
362
$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25
$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44
add a comment |
$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25
$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44
$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25
$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25
$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44
$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write
$$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$
Laplace transform of the power function is
$$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$
so identifying $n = 2k + 1/2$, we have
$$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
&= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
&= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
&= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$
The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore
$$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
&= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
&= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$
$endgroup$
add a comment |
$begingroup$
There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
$$D^{1/2} sin omega t =
frac omega {sqrt pi}
int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
frac {omega sin omega t} {sqrt pi}
int_0^t frac {sin omega tau} {sqrt tau} dtau +
frac {omega cos omega t} {sqrt pi}
int_0^t frac {cos omega tau} {sqrt tau} dtau = \
2 sqrt{frac omega pi}
,(S(sqrt{omega t}) sin omega t +
C(sqrt{omega t}) cos omega t),$$
where $S$ and $C$ are the Fresnel integrals.
$endgroup$
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048828%2finverse-laplace-transform-of-frac1s1-2s2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write
$$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$
Laplace transform of the power function is
$$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$
so identifying $n = 2k + 1/2$, we have
$$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
&= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
&= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
&= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$
The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore
$$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
&= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
&= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$
$endgroup$
add a comment |
$begingroup$
The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write
$$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$
Laplace transform of the power function is
$$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$
so identifying $n = 2k + 1/2$, we have
$$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
&= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
&= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
&= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$
The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore
$$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
&= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
&= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$
$endgroup$
add a comment |
$begingroup$
The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write
$$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$
Laplace transform of the power function is
$$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$
so identifying $n = 2k + 1/2$, we have
$$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
&= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
&= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
&= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$
The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore
$$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
&= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
&= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$
$endgroup$
The inverse Laplace transform can be done using the Bromwich integral, but this integral requires that you evaluate residues at $pm iomega$, and the contour needs to go around the branch cut on the negative real axis (keyhole contour). Alternatively, we can do the inverse transform term by term. First write
$$ frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}} = frac{sqrt{pi}}{s^{3/2}}frac{1}{1+omega^{2}/s^{2}} = sqrt{pi}sum_{k=0}^{infty}frac{(-1)^{k}omega^{2k}}{s^{2k+3/2}}. $$
Laplace transform of the power function is
$$ mathcal{L}[t^{n}] = frac{Gamma(n+1)}{s^{n+1}},$$
so identifying $n = 2k + 1/2$, we have
$$begin{aligned} mathcal{L}^{-1}left[frac{1}{s^{2k+3/2}}right] &= frac{t^{2k+1/2}}{Gamma(2k+3/2)} = frac{t^{2k+1/2}}{(2k+1/2)(2k-1/2)cdots (1/2)Gamma(1/2)} \
&= sqrt{frac{t}{pi}}frac{t^{2k}}{2^{2k+1}(k+1/4)(k-1/4)cdots(3/4)(1/4)} \
&= frac{1}{2}sqrt{frac{t}{pi}}frac{(t/2)^{2k}}{(1/4)(5/4)cdots(k-1+5/4)cdot(3/4)(7/4)cdots(k-1+3/4)} \
&= 2sqrt{frac{t}{pi}}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(t/2)^{2k}}{k!}.end{aligned}$$
The $(a)_{k}$ are Pochhammer symbols (rising factorials). Therefore
$$begin{aligned} mathcal{L}^{-1}left[frac{sqrt{pi}sqrt{s}}{s^{2} + omega^{2}}right] &= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-1)^{k}(omega^{2})^{k}(t^{2}/4)^{k}}{k!} \
&= 2sqrt{t}sum_{k=0}^{infty}frac{(1)_{k}}{(3/4)_{k}(5/4)_{k}}frac{(-omega^{2}t^{2}/4)^{k}}{k!} \
&= 2sqrt{t},{}_{1}F_{2}left(1;frac{3}{4},frac{5}{4};-frac{omega^{2}t^{2}}{4}right).end{aligned}$$
answered Dec 21 '18 at 21:06
IninterrompueIninterrompue
65019
65019
add a comment |
add a comment |
$begingroup$
There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
$$D^{1/2} sin omega t =
frac omega {sqrt pi}
int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
frac {omega sin omega t} {sqrt pi}
int_0^t frac {sin omega tau} {sqrt tau} dtau +
frac {omega cos omega t} {sqrt pi}
int_0^t frac {cos omega tau} {sqrt tau} dtau = \
2 sqrt{frac omega pi}
,(S(sqrt{omega t}) sin omega t +
C(sqrt{omega t}) cos omega t),$$
where $S$ and $C$ are the Fresnel integrals.
$endgroup$
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
add a comment |
$begingroup$
There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
$$D^{1/2} sin omega t =
frac omega {sqrt pi}
int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
frac {omega sin omega t} {sqrt pi}
int_0^t frac {sin omega tau} {sqrt tau} dtau +
frac {omega cos omega t} {sqrt pi}
int_0^t frac {cos omega tau} {sqrt tau} dtau = \
2 sqrt{frac omega pi}
,(S(sqrt{omega t}) sin omega t +
C(sqrt{omega t}) cos omega t),$$
where $S$ and $C$ are the Fresnel integrals.
$endgroup$
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
add a comment |
$begingroup$
There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
$$D^{1/2} sin omega t =
frac omega {sqrt pi}
int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
frac {omega sin omega t} {sqrt pi}
int_0^t frac {sin omega tau} {sqrt tau} dtau +
frac {omega cos omega t} {sqrt pi}
int_0^t frac {cos omega tau} {sqrt tau} dtau = \
2 sqrt{frac omega pi}
,(S(sqrt{omega t}) sin omega t +
C(sqrt{omega t}) cos omega t),$$
where $S$ and $C$ are the Fresnel integrals.
$endgroup$
There is some confusion with the $pm 1/2$ power in the title and in the formula with the convolution. I think you want
$$D^{1/2} sin omega t =
frac omega {sqrt pi}
int_0^t frac {cos omega tau} {sqrt{t - tau}} dtau = \
frac {omega sin omega t} {sqrt pi}
int_0^t frac {sin omega tau} {sqrt tau} dtau +
frac {omega cos omega t} {sqrt pi}
int_0^t frac {cos omega tau} {sqrt tau} dtau = \
2 sqrt{frac omega pi}
,(S(sqrt{omega t}) sin omega t +
C(sqrt{omega t}) cos omega t),$$
where $S$ and $C$ are the Fresnel integrals.
answered Dec 22 '18 at 14:55
MaximMaxim
5,1631219
5,1631219
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
add a comment |
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
$begingroup$
I have to evaluate and think about your solution, Although Mariusz's solution solved my problem. Thank you anyway.
$endgroup$
– user4642
Dec 24 '18 at 23:29
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048828%2finverse-laplace-transform-of-frac1s1-2s2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$mathcal{L}_s^{-1}left[frac{sqrt{pi } sqrt{s}}{s^2+omega ^2}right](t)=sqrt{pi } sqrt{t} E_{2,frac{3}{2}}left(-t^2 omega ^2right)$ where: $E$ is MittagLefflerE function.
$endgroup$
– Mariusz Iwaniuk
Dec 21 '18 at 20:25
$begingroup$
Thanks, helped a lot!
$endgroup$
– user4642
Dec 21 '18 at 20:44