Question on taylor series
$begingroup$
When we try to to find the Taylor series of let's say $e^x$ in $x=-1$ and of order up to $3$, I would think that we just find the Maclaurin series of $e^x$ and then instead of simply $x$ we put $x+1$.But my book as a first step does the following: $t=x+1$ so $x=t-1$
so $f (t − 1) = e^{(t−1)}$. I feel that this is pretty simple so not understanding it is pretty frustrating.What is going on here?
power-series taylor-expansion
$endgroup$
add a comment |
$begingroup$
When we try to to find the Taylor series of let's say $e^x$ in $x=-1$ and of order up to $3$, I would think that we just find the Maclaurin series of $e^x$ and then instead of simply $x$ we put $x+1$.But my book as a first step does the following: $t=x+1$ so $x=t-1$
so $f (t − 1) = e^{(t−1)}$. I feel that this is pretty simple so not understanding it is pretty frustrating.What is going on here?
power-series taylor-expansion
$endgroup$
add a comment |
$begingroup$
When we try to to find the Taylor series of let's say $e^x$ in $x=-1$ and of order up to $3$, I would think that we just find the Maclaurin series of $e^x$ and then instead of simply $x$ we put $x+1$.But my book as a first step does the following: $t=x+1$ so $x=t-1$
so $f (t − 1) = e^{(t−1)}$. I feel that this is pretty simple so not understanding it is pretty frustrating.What is going on here?
power-series taylor-expansion
$endgroup$
When we try to to find the Taylor series of let's say $e^x$ in $x=-1$ and of order up to $3$, I would think that we just find the Maclaurin series of $e^x$ and then instead of simply $x$ we put $x+1$.But my book as a first step does the following: $t=x+1$ so $x=t-1$
so $f (t − 1) = e^{(t−1)}$. I feel that this is pretty simple so not understanding it is pretty frustrating.What is going on here?
power-series taylor-expansion
power-series taylor-expansion
edited Dec 21 '18 at 19:32
caverac
14.5k31130
14.5k31130
asked Dec 21 '18 at 19:27
Michael P.Michael P.
222
222
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
We want to write $e^x$ in a series with $(x+1)^n$. To do this we can write
$$
begin{align}
e^x
&=frac1ecdot e^{x+1}\
&=frac1eleft(sum_{n=0}^inftyfrac{(x+1)^n}{n!}right)\
&=sum_{n=0}^inftyfrac{(x+1)^n}{e,n!}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
Assume we want the expansion of $f(x)$ arround $x=a$. $f$ is defined arround $a$.
let $g(x)=f(x+a)$.
$g$ is then defined arround $0$.
we expand $g(x)$ arround zero at order $n$ as
$$g(x)=P_n(x)+x^nepsilon(x)$$
then we get the expansion of $f(x)$ arround $a$ using that
$$f(x)=g(x-a)=$$
$$P_n(x-a)+(x-a)^nepsilon(x)$$ with
$$lim_{xto a}epsilon(x)=0$$
In your case
$$f(x)=e^x,;; a=-1, ;; g(x)=e^{x-1}$$
$$g(x)=e^{-1}Bigl(1+x+frac{x^2}{2}+frac{x^3}{6}Bigr)+x^3epsilon(x)$$
therefore
$$f(x)=e^{-1}Bigl(1+(x+1)+frac{(x+1)^2}{2}+frac{(x+1)^3}{6}Bigr)+(x+1)^3epsilon(x)$$
with $$lim_{xto -1}epsilon(x)=0$$
$endgroup$
add a comment |
$begingroup$
You could start with the Maclaurin series.
$e^x = 1 + x + frac 12x^2 + cdots$
Then plug $x+1$
$e^{x+1} = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e(e^{x}) = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e^{x} = e^{-1} + e^{-1}(x+1) + frac {e^{-1}}2(x+1)^2 + cdots\
$
But for other functions, it is not so easy to factor out that $+1$ and you should start from scratch.
$a_n = frac {f^{(n)}(-1)}{n!}$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048817%2fquestion-on-taylor-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We want to write $e^x$ in a series with $(x+1)^n$. To do this we can write
$$
begin{align}
e^x
&=frac1ecdot e^{x+1}\
&=frac1eleft(sum_{n=0}^inftyfrac{(x+1)^n}{n!}right)\
&=sum_{n=0}^inftyfrac{(x+1)^n}{e,n!}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
We want to write $e^x$ in a series with $(x+1)^n$. To do this we can write
$$
begin{align}
e^x
&=frac1ecdot e^{x+1}\
&=frac1eleft(sum_{n=0}^inftyfrac{(x+1)^n}{n!}right)\
&=sum_{n=0}^inftyfrac{(x+1)^n}{e,n!}
end{align}
$$
$endgroup$
add a comment |
$begingroup$
We want to write $e^x$ in a series with $(x+1)^n$. To do this we can write
$$
begin{align}
e^x
&=frac1ecdot e^{x+1}\
&=frac1eleft(sum_{n=0}^inftyfrac{(x+1)^n}{n!}right)\
&=sum_{n=0}^inftyfrac{(x+1)^n}{e,n!}
end{align}
$$
$endgroup$
We want to write $e^x$ in a series with $(x+1)^n$. To do this we can write
$$
begin{align}
e^x
&=frac1ecdot e^{x+1}\
&=frac1eleft(sum_{n=0}^inftyfrac{(x+1)^n}{n!}right)\
&=sum_{n=0}^inftyfrac{(x+1)^n}{e,n!}
end{align}
$$
answered Dec 21 '18 at 19:36
robjohn♦robjohn
267k27308631
267k27308631
add a comment |
add a comment |
$begingroup$
Assume we want the expansion of $f(x)$ arround $x=a$. $f$ is defined arround $a$.
let $g(x)=f(x+a)$.
$g$ is then defined arround $0$.
we expand $g(x)$ arround zero at order $n$ as
$$g(x)=P_n(x)+x^nepsilon(x)$$
then we get the expansion of $f(x)$ arround $a$ using that
$$f(x)=g(x-a)=$$
$$P_n(x-a)+(x-a)^nepsilon(x)$$ with
$$lim_{xto a}epsilon(x)=0$$
In your case
$$f(x)=e^x,;; a=-1, ;; g(x)=e^{x-1}$$
$$g(x)=e^{-1}Bigl(1+x+frac{x^2}{2}+frac{x^3}{6}Bigr)+x^3epsilon(x)$$
therefore
$$f(x)=e^{-1}Bigl(1+(x+1)+frac{(x+1)^2}{2}+frac{(x+1)^3}{6}Bigr)+(x+1)^3epsilon(x)$$
with $$lim_{xto -1}epsilon(x)=0$$
$endgroup$
add a comment |
$begingroup$
Assume we want the expansion of $f(x)$ arround $x=a$. $f$ is defined arround $a$.
let $g(x)=f(x+a)$.
$g$ is then defined arround $0$.
we expand $g(x)$ arround zero at order $n$ as
$$g(x)=P_n(x)+x^nepsilon(x)$$
then we get the expansion of $f(x)$ arround $a$ using that
$$f(x)=g(x-a)=$$
$$P_n(x-a)+(x-a)^nepsilon(x)$$ with
$$lim_{xto a}epsilon(x)=0$$
In your case
$$f(x)=e^x,;; a=-1, ;; g(x)=e^{x-1}$$
$$g(x)=e^{-1}Bigl(1+x+frac{x^2}{2}+frac{x^3}{6}Bigr)+x^3epsilon(x)$$
therefore
$$f(x)=e^{-1}Bigl(1+(x+1)+frac{(x+1)^2}{2}+frac{(x+1)^3}{6}Bigr)+(x+1)^3epsilon(x)$$
with $$lim_{xto -1}epsilon(x)=0$$
$endgroup$
add a comment |
$begingroup$
Assume we want the expansion of $f(x)$ arround $x=a$. $f$ is defined arround $a$.
let $g(x)=f(x+a)$.
$g$ is then defined arround $0$.
we expand $g(x)$ arround zero at order $n$ as
$$g(x)=P_n(x)+x^nepsilon(x)$$
then we get the expansion of $f(x)$ arround $a$ using that
$$f(x)=g(x-a)=$$
$$P_n(x-a)+(x-a)^nepsilon(x)$$ with
$$lim_{xto a}epsilon(x)=0$$
In your case
$$f(x)=e^x,;; a=-1, ;; g(x)=e^{x-1}$$
$$g(x)=e^{-1}Bigl(1+x+frac{x^2}{2}+frac{x^3}{6}Bigr)+x^3epsilon(x)$$
therefore
$$f(x)=e^{-1}Bigl(1+(x+1)+frac{(x+1)^2}{2}+frac{(x+1)^3}{6}Bigr)+(x+1)^3epsilon(x)$$
with $$lim_{xto -1}epsilon(x)=0$$
$endgroup$
Assume we want the expansion of $f(x)$ arround $x=a$. $f$ is defined arround $a$.
let $g(x)=f(x+a)$.
$g$ is then defined arround $0$.
we expand $g(x)$ arround zero at order $n$ as
$$g(x)=P_n(x)+x^nepsilon(x)$$
then we get the expansion of $f(x)$ arround $a$ using that
$$f(x)=g(x-a)=$$
$$P_n(x-a)+(x-a)^nepsilon(x)$$ with
$$lim_{xto a}epsilon(x)=0$$
In your case
$$f(x)=e^x,;; a=-1, ;; g(x)=e^{x-1}$$
$$g(x)=e^{-1}Bigl(1+x+frac{x^2}{2}+frac{x^3}{6}Bigr)+x^3epsilon(x)$$
therefore
$$f(x)=e^{-1}Bigl(1+(x+1)+frac{(x+1)^2}{2}+frac{(x+1)^3}{6}Bigr)+(x+1)^3epsilon(x)$$
with $$lim_{xto -1}epsilon(x)=0$$
edited Dec 21 '18 at 19:45
answered Dec 21 '18 at 19:34
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
add a comment |
add a comment |
$begingroup$
You could start with the Maclaurin series.
$e^x = 1 + x + frac 12x^2 + cdots$
Then plug $x+1$
$e^{x+1} = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e(e^{x}) = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e^{x} = e^{-1} + e^{-1}(x+1) + frac {e^{-1}}2(x+1)^2 + cdots\
$
But for other functions, it is not so easy to factor out that $+1$ and you should start from scratch.
$a_n = frac {f^{(n)}(-1)}{n!}$
$endgroup$
add a comment |
$begingroup$
You could start with the Maclaurin series.
$e^x = 1 + x + frac 12x^2 + cdots$
Then plug $x+1$
$e^{x+1} = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e(e^{x}) = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e^{x} = e^{-1} + e^{-1}(x+1) + frac {e^{-1}}2(x+1)^2 + cdots\
$
But for other functions, it is not so easy to factor out that $+1$ and you should start from scratch.
$a_n = frac {f^{(n)}(-1)}{n!}$
$endgroup$
add a comment |
$begingroup$
You could start with the Maclaurin series.
$e^x = 1 + x + frac 12x^2 + cdots$
Then plug $x+1$
$e^{x+1} = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e(e^{x}) = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e^{x} = e^{-1} + e^{-1}(x+1) + frac {e^{-1}}2(x+1)^2 + cdots\
$
But for other functions, it is not so easy to factor out that $+1$ and you should start from scratch.
$a_n = frac {f^{(n)}(-1)}{n!}$
$endgroup$
You could start with the Maclaurin series.
$e^x = 1 + x + frac 12x^2 + cdots$
Then plug $x+1$
$e^{x+1} = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e(e^{x}) = 1 + (x+1) + frac 12(x+1)^2 + cdots\
e^{x} = e^{-1} + e^{-1}(x+1) + frac {e^{-1}}2(x+1)^2 + cdots\
$
But for other functions, it is not so easy to factor out that $+1$ and you should start from scratch.
$a_n = frac {f^{(n)}(-1)}{n!}$
edited Dec 21 '18 at 21:15
answered Dec 21 '18 at 19:34
Doug MDoug M
44.7k31854
44.7k31854
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3048817%2fquestion-on-taylor-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown