A question on the approximation of $ln(x!)$ for small x
$begingroup$
In a question of Arfken and Weber's Mathematical Methods for Physicists,
For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.
Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
I can only do this.
$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that
$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$
I don't know how to prove this.
$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.
taylor-expansion factorial riemann-zeta
$endgroup$
add a comment |
$begingroup$
In a question of Arfken and Weber's Mathematical Methods for Physicists,
For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.
Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
I can only do this.
$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that
$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$
I don't know how to prove this.
$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.
taylor-expansion factorial riemann-zeta
$endgroup$
$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15
$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56
$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19
$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51
add a comment |
$begingroup$
In a question of Arfken and Weber's Mathematical Methods for Physicists,
For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.
Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
I can only do this.
$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that
$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$
I don't know how to prove this.
$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.
taylor-expansion factorial riemann-zeta
$endgroup$
In a question of Arfken and Weber's Mathematical Methods for Physicists,
For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.
Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
I can only do this.
$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$
Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that
$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$
I don't know how to prove this.
$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.
taylor-expansion factorial riemann-zeta
taylor-expansion factorial riemann-zeta
edited Jan 6 at 21:05
rtybase
11.5k31534
11.5k31534
asked Jan 6 at 20:54
Asit SrivastavaAsit Srivastava
257
257
$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15
$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56
$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19
$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51
add a comment |
$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15
$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56
$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19
$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51
$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15
$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15
$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56
$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56
$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19
$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19
$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51
$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064385%2fa-question-on-the-approximation-of-lnx-for-small-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064385%2fa-question-on-the-approximation-of-lnx-for-small-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15
$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56
$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19
$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51