A question on the approximation of $ln(x!)$ for small x












0












$begingroup$


In a question of Arfken and Weber's Mathematical Methods for Physicists,



For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.



Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



I can only do this.



$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that



$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$



I don't know how to prove this.



$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
    $endgroup$
    – reuns
    Jan 6 at 21:15










  • $begingroup$
    Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
    $endgroup$
    – Asit Srivastava
    Jan 6 at 21:56












  • $begingroup$
    Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
    $endgroup$
    – reuns
    Jan 6 at 22:19










  • $begingroup$
    Thanks. It worked.
    $endgroup$
    – Asit Srivastava
    Jan 6 at 22:51
















0












$begingroup$


In a question of Arfken and Weber's Mathematical Methods for Physicists,



For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.



Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



I can only do this.



$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that



$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$



I don't know how to prove this.



$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
    $endgroup$
    – reuns
    Jan 6 at 21:15










  • $begingroup$
    Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
    $endgroup$
    – Asit Srivastava
    Jan 6 at 21:56












  • $begingroup$
    Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
    $endgroup$
    – reuns
    Jan 6 at 22:19










  • $begingroup$
    Thanks. It worked.
    $endgroup$
    – Asit Srivastava
    Jan 6 at 22:51














0












0








0





$begingroup$


In a question of Arfken and Weber's Mathematical Methods for Physicists,



For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.



Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



I can only do this.



$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that



$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$



I don't know how to prove this.



$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.










share|cite|improve this question











$endgroup$




In a question of Arfken and Weber's Mathematical Methods for Physicists,



For small values of $x$, $ln(x!)=-gamma x+sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n$, where the symbols used have their usual meanings.



Now I need to prove that this can also be written as
$$ln(x!)=frac{1}{2}lnleft(frac{pi x}{sinpi x}right)-gamma x-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



I can only do this.



$$sumlimits_{n=2}^{infty}(-1)^nfrac{zeta(n)}{n}x^n=\
left(frac{zeta(2)}{2}x^2+frac{zeta(4)}{4}x^4+frac{zeta(6)}{6}x^6+...right)-left(frac{zeta(3)}{3}x^3+frac{zeta(5)}{5}x^5+frac{zeta(7)}{7}x^7+...right)
=\sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}-sumlimits_{n=1}^{infty}frac{zeta(2n+1)}{2n+1}x^{2n+1}$$



Putting this in the original equation and comparing it with what needs to be proven, it can be concluded that



$$frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$$



I don't know how to prove this.



$frac{pi x}{sinpi x}=xGamma(x)Gamma(1-x)$ I think this has to do something with it since gamma function and zeta function are related to each other through an integral.







taylor-expansion factorial riemann-zeta






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 6 at 21:05









rtybase

11.5k31534




11.5k31534










asked Jan 6 at 20:54









Asit SrivastavaAsit Srivastava

257




257












  • $begingroup$
    Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
    $endgroup$
    – reuns
    Jan 6 at 21:15










  • $begingroup$
    Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
    $endgroup$
    – Asit Srivastava
    Jan 6 at 21:56












  • $begingroup$
    Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
    $endgroup$
    – reuns
    Jan 6 at 22:19










  • $begingroup$
    Thanks. It worked.
    $endgroup$
    – Asit Srivastava
    Jan 6 at 22:51


















  • $begingroup$
    Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
    $endgroup$
    – reuns
    Jan 6 at 21:15










  • $begingroup$
    Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
    $endgroup$
    – Asit Srivastava
    Jan 6 at 21:56












  • $begingroup$
    Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
    $endgroup$
    – reuns
    Jan 6 at 22:19










  • $begingroup$
    Thanks. It worked.
    $endgroup$
    – Asit Srivastava
    Jan 6 at 22:51
















$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15




$begingroup$
Using $zeta(2n)=(-1)^{n+1}frac{B_{2n}(2pi)^{2n}}{2(2n)!} $ and $sum_{n=0}^infty frac{B_n}{n!} x^n = frac{x}{e^x-1}$ you obtain $ f(x)=sum_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}=frac12 (frac{2pi ix}{e^{2pi ix}-1}+ frac{-2pi ix}{e^{-2pi ix}-1})$ and you can compare $f(x)/x$ with the derivative of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)$
$endgroup$
– reuns
Jan 6 at 21:15












$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56






$begingroup$
Using $sumlimits_{n=1}^{infty}frac{B_{2n}}{(2n)!}x^{2n}=frac{x}{e^x-1}+frac{x}{2}-1$, I got $sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)!}(2pi x)^{2n}=frac{1}{2}[frac{2piiota x}{e^{2piiota x}-1}+frac{-2piiota x}{e^{-2piiota x}-1}]-1$. When zeta function is expressed in terms of Bernoulli numbers, $f(x)=frac{-1}{2}sumlimits_{n=1}^{infty}(-1)^nfrac{B_{2n}}{(2n)! (2n)}(2pi x)^{2n}$. $2n$ appears in the denomiantor. How to proceed?
$endgroup$
– Asit Srivastava
Jan 6 at 21:56














$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19




$begingroup$
Differentiate both side of $frac{1}{2}lnleft(frac{pi x}{sinpi x}right)=sumlimits_{n=1}^{infty}frac{zeta(2n)}{2n}x^{2n}$
$endgroup$
– reuns
Jan 6 at 22:19












$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51




$begingroup$
Thanks. It worked.
$endgroup$
– Asit Srivastava
Jan 6 at 22:51










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064385%2fa-question-on-the-approximation-of-lnx-for-small-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064385%2fa-question-on-the-approximation-of-lnx-for-small-x%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna