Find Levi-Civita Connection in Hyperbolic Space












4












$begingroup$


With:
$$
mathbb{H}^n=left{ (x_0,x_1,dots, x_n)in mathbb{R}^{n+1}: ; x_0^2=1+x_1^2+cdots +x_n^2,; x_0>0right}.
$$

and the form
$$
langlelangle(u_0,u_1,dots, u_n),(v_0,v_1,dots,v_n)ranglerangle=-u_0v_0+u_1v_1+cdots+u_nv_n,
$$

I have to prove that
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle P,
$$

where $overline{nabla}$ is the connection in $mathbb{R}^{n+1}$ and $P(p)=p$.



I have tried what follows:
I know that the normal vector to a point $p=(p_0,p_1,dots,p_n)inmathbb{H}^n$ is $(-p_0,p_1,dots,p_n)$ and also that ($langle, rangle$ is the usual product):
$$
nabla_X Y =overline{nabla}_X Y -langle overline{nabla}_XY,Nrangle N.
$$



Since $langle overline{nabla}_XY,Nrangle=X(langle Y,Nrangle)-langle Y,overline{nabla}_X Nrangle=-langle Y,overline{nabla}_X Nrangle$. Now $overline{nabla}_X N=sum X(N_i)frac{partial}{partial x_i}=X'$, where $X'$ is $X$, but with a change of sign in the first coordinate. Now $langle Y,overline{nabla}_X Nrangle=langle Y,X'rangle=langle langle Y,X ranglerangle$.
So I get
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle N,
$$

which is the same as above but with a change in a sign. Where is my mistake?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't see any sign difference. Can you proofread? Also, you have a typo in the definition of $langlelangle u,vranglerangle$.
    $endgroup$
    – Ted Shifrin
    Jan 7 at 0:49












  • $begingroup$
    The difference is that in one equation appears $P$ and in other $N$. And $p=(p_0, p_1,dots,p_n$ while $N=(-p_0,p_1,dots,p_n)$.
    $endgroup$
    – davidivadful
    Jan 7 at 8:39
















4












$begingroup$


With:
$$
mathbb{H}^n=left{ (x_0,x_1,dots, x_n)in mathbb{R}^{n+1}: ; x_0^2=1+x_1^2+cdots +x_n^2,; x_0>0right}.
$$

and the form
$$
langlelangle(u_0,u_1,dots, u_n),(v_0,v_1,dots,v_n)ranglerangle=-u_0v_0+u_1v_1+cdots+u_nv_n,
$$

I have to prove that
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle P,
$$

where $overline{nabla}$ is the connection in $mathbb{R}^{n+1}$ and $P(p)=p$.



I have tried what follows:
I know that the normal vector to a point $p=(p_0,p_1,dots,p_n)inmathbb{H}^n$ is $(-p_0,p_1,dots,p_n)$ and also that ($langle, rangle$ is the usual product):
$$
nabla_X Y =overline{nabla}_X Y -langle overline{nabla}_XY,Nrangle N.
$$



Since $langle overline{nabla}_XY,Nrangle=X(langle Y,Nrangle)-langle Y,overline{nabla}_X Nrangle=-langle Y,overline{nabla}_X Nrangle$. Now $overline{nabla}_X N=sum X(N_i)frac{partial}{partial x_i}=X'$, where $X'$ is $X$, but with a change of sign in the first coordinate. Now $langle Y,overline{nabla}_X Nrangle=langle Y,X'rangle=langle langle Y,X ranglerangle$.
So I get
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle N,
$$

which is the same as above but with a change in a sign. Where is my mistake?










share|cite|improve this question











$endgroup$












  • $begingroup$
    I don't see any sign difference. Can you proofread? Also, you have a typo in the definition of $langlelangle u,vranglerangle$.
    $endgroup$
    – Ted Shifrin
    Jan 7 at 0:49












  • $begingroup$
    The difference is that in one equation appears $P$ and in other $N$. And $p=(p_0, p_1,dots,p_n$ while $N=(-p_0,p_1,dots,p_n)$.
    $endgroup$
    – davidivadful
    Jan 7 at 8:39














4












4








4


1



$begingroup$


With:
$$
mathbb{H}^n=left{ (x_0,x_1,dots, x_n)in mathbb{R}^{n+1}: ; x_0^2=1+x_1^2+cdots +x_n^2,; x_0>0right}.
$$

and the form
$$
langlelangle(u_0,u_1,dots, u_n),(v_0,v_1,dots,v_n)ranglerangle=-u_0v_0+u_1v_1+cdots+u_nv_n,
$$

I have to prove that
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle P,
$$

where $overline{nabla}$ is the connection in $mathbb{R}^{n+1}$ and $P(p)=p$.



I have tried what follows:
I know that the normal vector to a point $p=(p_0,p_1,dots,p_n)inmathbb{H}^n$ is $(-p_0,p_1,dots,p_n)$ and also that ($langle, rangle$ is the usual product):
$$
nabla_X Y =overline{nabla}_X Y -langle overline{nabla}_XY,Nrangle N.
$$



Since $langle overline{nabla}_XY,Nrangle=X(langle Y,Nrangle)-langle Y,overline{nabla}_X Nrangle=-langle Y,overline{nabla}_X Nrangle$. Now $overline{nabla}_X N=sum X(N_i)frac{partial}{partial x_i}=X'$, where $X'$ is $X$, but with a change of sign in the first coordinate. Now $langle Y,overline{nabla}_X Nrangle=langle Y,X'rangle=langle langle Y,X ranglerangle$.
So I get
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle N,
$$

which is the same as above but with a change in a sign. Where is my mistake?










share|cite|improve this question











$endgroup$




With:
$$
mathbb{H}^n=left{ (x_0,x_1,dots, x_n)in mathbb{R}^{n+1}: ; x_0^2=1+x_1^2+cdots +x_n^2,; x_0>0right}.
$$

and the form
$$
langlelangle(u_0,u_1,dots, u_n),(v_0,v_1,dots,v_n)ranglerangle=-u_0v_0+u_1v_1+cdots+u_nv_n,
$$

I have to prove that
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle P,
$$

where $overline{nabla}$ is the connection in $mathbb{R}^{n+1}$ and $P(p)=p$.



I have tried what follows:
I know that the normal vector to a point $p=(p_0,p_1,dots,p_n)inmathbb{H}^n$ is $(-p_0,p_1,dots,p_n)$ and also that ($langle, rangle$ is the usual product):
$$
nabla_X Y =overline{nabla}_X Y -langle overline{nabla}_XY,Nrangle N.
$$



Since $langle overline{nabla}_XY,Nrangle=X(langle Y,Nrangle)-langle Y,overline{nabla}_X Nrangle=-langle Y,overline{nabla}_X Nrangle$. Now $overline{nabla}_X N=sum X(N_i)frac{partial}{partial x_i}=X'$, where $X'$ is $X$, but with a change of sign in the first coordinate. Now $langle Y,overline{nabla}_X Nrangle=langle Y,X'rangle=langle langle Y,X ranglerangle$.
So I get
$$
nabla_X Y =overline{nabla}_X Y -langlelangle X,Yranglerangle N,
$$

which is the same as above but with a change in a sign. Where is my mistake?







geometry differential-geometry riemannian-geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 7 at 8:35







davidivadful

















asked Jan 6 at 19:41









davidivadfuldavidivadful

13610




13610












  • $begingroup$
    I don't see any sign difference. Can you proofread? Also, you have a typo in the definition of $langlelangle u,vranglerangle$.
    $endgroup$
    – Ted Shifrin
    Jan 7 at 0:49












  • $begingroup$
    The difference is that in one equation appears $P$ and in other $N$. And $p=(p_0, p_1,dots,p_n$ while $N=(-p_0,p_1,dots,p_n)$.
    $endgroup$
    – davidivadful
    Jan 7 at 8:39


















  • $begingroup$
    I don't see any sign difference. Can you proofread? Also, you have a typo in the definition of $langlelangle u,vranglerangle$.
    $endgroup$
    – Ted Shifrin
    Jan 7 at 0:49












  • $begingroup$
    The difference is that in one equation appears $P$ and in other $N$. And $p=(p_0, p_1,dots,p_n$ while $N=(-p_0,p_1,dots,p_n)$.
    $endgroup$
    – davidivadful
    Jan 7 at 8:39
















$begingroup$
I don't see any sign difference. Can you proofread? Also, you have a typo in the definition of $langlelangle u,vranglerangle$.
$endgroup$
– Ted Shifrin
Jan 7 at 0:49






$begingroup$
I don't see any sign difference. Can you proofread? Also, you have a typo in the definition of $langlelangle u,vranglerangle$.
$endgroup$
– Ted Shifrin
Jan 7 at 0:49














$begingroup$
The difference is that in one equation appears $P$ and in other $N$. And $p=(p_0, p_1,dots,p_n$ while $N=(-p_0,p_1,dots,p_n)$.
$endgroup$
– davidivadful
Jan 7 at 8:39




$begingroup$
The difference is that in one equation appears $P$ and in other $N$. And $p=(p_0, p_1,dots,p_n$ while $N=(-p_0,p_1,dots,p_n)$.
$endgroup$
– davidivadful
Jan 7 at 8:39










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064320%2ffind-levi-civita-connection-in-hyperbolic-space%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064320%2ffind-levi-civita-connection-in-hyperbolic-space%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna