Taylor expansion for the exponential series
$begingroup$
Inside this question, a key derivation was made in which
$$x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
I know that we can write $x(a)$ as a series by
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
But, I don't see how
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n=cdots=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
How do you derive $x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$?
derivatives taylor-expansion exponential-function
$endgroup$
add a comment |
$begingroup$
Inside this question, a key derivation was made in which
$$x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
I know that we can write $x(a)$ as a series by
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
But, I don't see how
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n=cdots=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
How do you derive $x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$?
derivatives taylor-expansion exponential-function
$endgroup$
1
$begingroup$
Related
$endgroup$
– A.Γ.
Jan 6 at 19:41
$begingroup$
There is also a nice historical chapter on the topic.
$endgroup$
– A.Γ.
Jan 6 at 20:15
add a comment |
$begingroup$
Inside this question, a key derivation was made in which
$$x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
I know that we can write $x(a)$ as a series by
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
But, I don't see how
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n=cdots=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
How do you derive $x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$?
derivatives taylor-expansion exponential-function
$endgroup$
Inside this question, a key derivation was made in which
$$x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
I know that we can write $x(a)$ as a series by
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
But, I don't see how
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n=cdots=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$$
How do you derive $x(a)=expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}$?
derivatives taylor-expansion exponential-function
derivatives taylor-expansion exponential-function
edited Jan 6 at 19:32
A.Γ.
22.9k32656
22.9k32656
asked Jan 6 at 19:04
Axion004Axion004
398313
398313
1
$begingroup$
Related
$endgroup$
– A.Γ.
Jan 6 at 19:41
$begingroup$
There is also a nice historical chapter on the topic.
$endgroup$
– A.Γ.
Jan 6 at 20:15
add a comment |
1
$begingroup$
Related
$endgroup$
– A.Γ.
Jan 6 at 19:41
$begingroup$
There is also a nice historical chapter on the topic.
$endgroup$
– A.Γ.
Jan 6 at 20:15
1
1
$begingroup$
Related
$endgroup$
– A.Γ.
Jan 6 at 19:41
$begingroup$
Related
$endgroup$
– A.Γ.
Jan 6 at 19:41
$begingroup$
There is also a nice historical chapter on the topic.
$endgroup$
– A.Γ.
Jan 6 at 20:15
$begingroup$
There is also a nice historical chapter on the topic.
$endgroup$
– A.Γ.
Jan 6 at 20:15
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Through the related question, I think I understand the derivation.
We are given that
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
We also know that
$$exp(a)=sum_{n=0}^inftyfrac{a^n}{n!}$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial}{partial{t}}Big)^n$$
Hence if we evaluate this at $x(t)$ we have
$$expBig(afrac{partial}{partial{t}}Big)x(t)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial{x(t)}}{partial{t}}Big)^n =sum_{n=0}^inftyfrac{a^n}{n!}x^{n}(t)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n$$
It is necessary for $t=0$ in order to compute the Maclaurin expansion. If $tneq0$, then we would have
$$x(a)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}(a-t)^n$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n=x(a)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064271%2ftaylor-expansion-for-the-exponential-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Through the related question, I think I understand the derivation.
We are given that
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
We also know that
$$exp(a)=sum_{n=0}^inftyfrac{a^n}{n!}$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial}{partial{t}}Big)^n$$
Hence if we evaluate this at $x(t)$ we have
$$expBig(afrac{partial}{partial{t}}Big)x(t)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial{x(t)}}{partial{t}}Big)^n =sum_{n=0}^inftyfrac{a^n}{n!}x^{n}(t)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n$$
It is necessary for $t=0$ in order to compute the Maclaurin expansion. If $tneq0$, then we would have
$$x(a)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}(a-t)^n$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n=x(a)$$
$endgroup$
add a comment |
$begingroup$
Through the related question, I think I understand the derivation.
We are given that
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
We also know that
$$exp(a)=sum_{n=0}^inftyfrac{a^n}{n!}$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial}{partial{t}}Big)^n$$
Hence if we evaluate this at $x(t)$ we have
$$expBig(afrac{partial}{partial{t}}Big)x(t)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial{x(t)}}{partial{t}}Big)^n =sum_{n=0}^inftyfrac{a^n}{n!}x^{n}(t)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n$$
It is necessary for $t=0$ in order to compute the Maclaurin expansion. If $tneq0$, then we would have
$$x(a)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}(a-t)^n$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n=x(a)$$
$endgroup$
add a comment |
$begingroup$
Through the related question, I think I understand the derivation.
We are given that
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
We also know that
$$exp(a)=sum_{n=0}^inftyfrac{a^n}{n!}$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial}{partial{t}}Big)^n$$
Hence if we evaluate this at $x(t)$ we have
$$expBig(afrac{partial}{partial{t}}Big)x(t)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial{x(t)}}{partial{t}}Big)^n =sum_{n=0}^inftyfrac{a^n}{n!}x^{n}(t)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n$$
It is necessary for $t=0$ in order to compute the Maclaurin expansion. If $tneq0$, then we would have
$$x(a)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}(a-t)^n$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n=x(a)$$
$endgroup$
Through the related question, I think I understand the derivation.
We are given that
$$x(a)=sum_{n=0}^inftyfrac{x^{(n)}}{n!}a^n$$
We also know that
$$exp(a)=sum_{n=0}^inftyfrac{a^n}{n!}$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial}{partial{t}}Big)^n$$
Hence if we evaluate this at $x(t)$ we have
$$expBig(afrac{partial}{partial{t}}Big)x(t)=sum_{n=0}^inftyfrac{a^n}{n!}Big(frac{partial{x(t)}}{partial{t}}Big)^n =sum_{n=0}^inftyfrac{a^n}{n!}x^{n}(t)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n$$
It is necessary for $t=0$ in order to compute the Maclaurin expansion. If $tneq0$, then we would have
$$x(a)=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}(a-t)^n$$
Therefore,
$$expBig(afrac{partial}{partial{t}}Big)x(t)Big|_{t=0}=sum_{n=0}^inftyfrac{x^{n}(t)}{n!}a^n=x(a)$$
answered Jan 6 at 20:19
Axion004Axion004
398313
398313
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064271%2ftaylor-expansion-for-the-exponential-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Related
$endgroup$
– A.Γ.
Jan 6 at 19:41
$begingroup$
There is also a nice historical chapter on the topic.
$endgroup$
– A.Γ.
Jan 6 at 20:15