Prove $ frac{x}{2x-arctan x } $ continuous












0












$begingroup$


$$ f(x) = frac{x}{2x-arctan x } $$



Prove that $ f(x) $ isn't continuous at only one single point.



Obviously $ x = 0 Rightarrow 2x-arctan x = 0 $ and therefore it isn't continuous at $ x = 0 $ but how can I show that the are no other points?



I was thinking about the graph of $ g(x) = arctan x $ which gravitate between $ -pi/2 $ to $ pi/2 $ and so the only option for the $ 2x - arctan x = 0 $ only if $ x = 0 $.



but that's not enough as a proof. I guess I should assume there is another point and get contradiction?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    $$ f(x) = frac{x}{2x-arctan x } $$



    Prove that $ f(x) $ isn't continuous at only one single point.



    Obviously $ x = 0 Rightarrow 2x-arctan x = 0 $ and therefore it isn't continuous at $ x = 0 $ but how can I show that the are no other points?



    I was thinking about the graph of $ g(x) = arctan x $ which gravitate between $ -pi/2 $ to $ pi/2 $ and so the only option for the $ 2x - arctan x = 0 $ only if $ x = 0 $.



    but that's not enough as a proof. I guess I should assume there is another point and get contradiction?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      $$ f(x) = frac{x}{2x-arctan x } $$



      Prove that $ f(x) $ isn't continuous at only one single point.



      Obviously $ x = 0 Rightarrow 2x-arctan x = 0 $ and therefore it isn't continuous at $ x = 0 $ but how can I show that the are no other points?



      I was thinking about the graph of $ g(x) = arctan x $ which gravitate between $ -pi/2 $ to $ pi/2 $ and so the only option for the $ 2x - arctan x = 0 $ only if $ x = 0 $.



      but that's not enough as a proof. I guess I should assume there is another point and get contradiction?










      share|cite|improve this question









      $endgroup$




      $$ f(x) = frac{x}{2x-arctan x } $$



      Prove that $ f(x) $ isn't continuous at only one single point.



      Obviously $ x = 0 Rightarrow 2x-arctan x = 0 $ and therefore it isn't continuous at $ x = 0 $ but how can I show that the are no other points?



      I was thinking about the graph of $ g(x) = arctan x $ which gravitate between $ -pi/2 $ to $ pi/2 $ and so the only option for the $ 2x - arctan x = 0 $ only if $ x = 0 $.



      but that's not enough as a proof. I guess I should assume there is another point and get contradiction?







      calculus






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 6 at 19:08









      bm1125bm1125

      67816




      67816






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          We want to show that $2x-arctan x =0$ has only one root, $x=0$.



          Let $g(x)=2x-arctan x$. Then $g'(x)= 2 - frac{1}{1+x^2} geq 1$.



          Assume for a contradiction that $g$ has another root: $r$.



          As $g$ is continuous and differentiable everywhere, and $g(0)=g(r)$, we can apply Rolle's theorem.



          By Rolle's theorem, $g'$ has a root between $0$ and $r$.



          But we found that $g' geq 1$. Contradiction. There are no other roots.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064279%2fprove-fracx2x-arctan-x-continuous%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            We want to show that $2x-arctan x =0$ has only one root, $x=0$.



            Let $g(x)=2x-arctan x$. Then $g'(x)= 2 - frac{1}{1+x^2} geq 1$.



            Assume for a contradiction that $g$ has another root: $r$.



            As $g$ is continuous and differentiable everywhere, and $g(0)=g(r)$, we can apply Rolle's theorem.



            By Rolle's theorem, $g'$ has a root between $0$ and $r$.



            But we found that $g' geq 1$. Contradiction. There are no other roots.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              We want to show that $2x-arctan x =0$ has only one root, $x=0$.



              Let $g(x)=2x-arctan x$. Then $g'(x)= 2 - frac{1}{1+x^2} geq 1$.



              Assume for a contradiction that $g$ has another root: $r$.



              As $g$ is continuous and differentiable everywhere, and $g(0)=g(r)$, we can apply Rolle's theorem.



              By Rolle's theorem, $g'$ has a root between $0$ and $r$.



              But we found that $g' geq 1$. Contradiction. There are no other roots.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                We want to show that $2x-arctan x =0$ has only one root, $x=0$.



                Let $g(x)=2x-arctan x$. Then $g'(x)= 2 - frac{1}{1+x^2} geq 1$.



                Assume for a contradiction that $g$ has another root: $r$.



                As $g$ is continuous and differentiable everywhere, and $g(0)=g(r)$, we can apply Rolle's theorem.



                By Rolle's theorem, $g'$ has a root between $0$ and $r$.



                But we found that $g' geq 1$. Contradiction. There are no other roots.






                share|cite|improve this answer









                $endgroup$



                We want to show that $2x-arctan x =0$ has only one root, $x=0$.



                Let $g(x)=2x-arctan x$. Then $g'(x)= 2 - frac{1}{1+x^2} geq 1$.



                Assume for a contradiction that $g$ has another root: $r$.



                As $g$ is continuous and differentiable everywhere, and $g(0)=g(r)$, we can apply Rolle's theorem.



                By Rolle's theorem, $g'$ has a root between $0$ and $r$.



                But we found that $g' geq 1$. Contradiction. There are no other roots.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 6 at 19:16









                ThePortakalThePortakal

                4,03011527




                4,03011527






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3064279%2fprove-fracx2x-arctan-x-continuous%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna