Convergence of Fourier serie : if $fin L(0,2pi)$ is $2pi$ periodic and locally $alpha -$Holder continuous,...
$begingroup$
Let $fin L^1(0,2pi)$ a function s.t. $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ for some $delta $, then $$lim_{Nto infty }S_N(f)(a)=frac{f(a+)+f(a-)}{2}.$$
for all $ain[0,2pi]$. I recall that $f(apm)=lim_{xto a^{pm}}f(x)$ and that $S_N(f)$ is the partial Fourier sum.
Q1) So if $a=0$ what is the Fourier series ? Is it $$lim_{Nto infty }S_N(f)(x)frac{f(0^+)+f(2pi^-)}{2} ?$$
Q2) If $anotin [0,2pi]$, do we still have the result, i.e. if $a=5pi$, does $$lim_{Nto infty }S_N(f)(a)=frac{f(5pi^+)+f(5pi^-)}{2}$$ as well or it work on $[0,2pi]$ only ?
Q3) In the condition $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ shouldn't it be $fin mathcal C^{0,alpha }((a-delta ,a))cap mathcal C^{0,alpha }((a,a+delta ))$ ? Because if $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ then $fin mathcal C^{0,alpha }([a-delta ,a+delta ])$ ?
fourier-series
$endgroup$
add a comment |
$begingroup$
Let $fin L^1(0,2pi)$ a function s.t. $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ for some $delta $, then $$lim_{Nto infty }S_N(f)(a)=frac{f(a+)+f(a-)}{2}.$$
for all $ain[0,2pi]$. I recall that $f(apm)=lim_{xto a^{pm}}f(x)$ and that $S_N(f)$ is the partial Fourier sum.
Q1) So if $a=0$ what is the Fourier series ? Is it $$lim_{Nto infty }S_N(f)(x)frac{f(0^+)+f(2pi^-)}{2} ?$$
Q2) If $anotin [0,2pi]$, do we still have the result, i.e. if $a=5pi$, does $$lim_{Nto infty }S_N(f)(a)=frac{f(5pi^+)+f(5pi^-)}{2}$$ as well or it work on $[0,2pi]$ only ?
Q3) In the condition $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ shouldn't it be $fin mathcal C^{0,alpha }((a-delta ,a))cap mathcal C^{0,alpha }((a,a+delta ))$ ? Because if $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ then $fin mathcal C^{0,alpha }([a-delta ,a+delta ])$ ?
fourier-series
$endgroup$
add a comment |
$begingroup$
Let $fin L^1(0,2pi)$ a function s.t. $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ for some $delta $, then $$lim_{Nto infty }S_N(f)(a)=frac{f(a+)+f(a-)}{2}.$$
for all $ain[0,2pi]$. I recall that $f(apm)=lim_{xto a^{pm}}f(x)$ and that $S_N(f)$ is the partial Fourier sum.
Q1) So if $a=0$ what is the Fourier series ? Is it $$lim_{Nto infty }S_N(f)(x)frac{f(0^+)+f(2pi^-)}{2} ?$$
Q2) If $anotin [0,2pi]$, do we still have the result, i.e. if $a=5pi$, does $$lim_{Nto infty }S_N(f)(a)=frac{f(5pi^+)+f(5pi^-)}{2}$$ as well or it work on $[0,2pi]$ only ?
Q3) In the condition $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ shouldn't it be $fin mathcal C^{0,alpha }((a-delta ,a))cap mathcal C^{0,alpha }((a,a+delta ))$ ? Because if $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ then $fin mathcal C^{0,alpha }([a-delta ,a+delta ])$ ?
fourier-series
$endgroup$
Let $fin L^1(0,2pi)$ a function s.t. $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ for some $delta $, then $$lim_{Nto infty }S_N(f)(a)=frac{f(a+)+f(a-)}{2}.$$
for all $ain[0,2pi]$. I recall that $f(apm)=lim_{xto a^{pm}}f(x)$ and that $S_N(f)$ is the partial Fourier sum.
Q1) So if $a=0$ what is the Fourier series ? Is it $$lim_{Nto infty }S_N(f)(x)frac{f(0^+)+f(2pi^-)}{2} ?$$
Q2) If $anotin [0,2pi]$, do we still have the result, i.e. if $a=5pi$, does $$lim_{Nto infty }S_N(f)(a)=frac{f(5pi^+)+f(5pi^-)}{2}$$ as well or it work on $[0,2pi]$ only ?
Q3) In the condition $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ shouldn't it be $fin mathcal C^{0,alpha }((a-delta ,a))cap mathcal C^{0,alpha }((a,a+delta ))$ ? Because if $fin mathcal C^{0,alpha }([a-delta ,a])cap mathcal C^{0,alpha }([a,a+delta ])$ then $fin mathcal C^{0,alpha }([a-delta ,a+delta ])$ ?
fourier-series
fourier-series
edited Jan 2 at 13:07
NewMath
asked Jan 2 at 11:43
NewMathNewMath
4059
4059
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059377%2fconvergence-of-fourier-serie-if-f-in-l0-2-pi-is-2-pi-periodic-and-locall%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059377%2fconvergence-of-fourier-serie-if-f-in-l0-2-pi-is-2-pi-periodic-and-locall%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown