How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?
$begingroup$
Let $x, r in mathbb{Q}$.
I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.
Which $x, r$ makes $(1+x)^r$ a rational number?
Answer:
If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,
If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,
and so on $ cdots $
How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?
Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?
number-theory elementary-number-theory binomial-theorem
$endgroup$
add a comment |
$begingroup$
Let $x, r in mathbb{Q}$.
I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.
Which $x, r$ makes $(1+x)^r$ a rational number?
Answer:
If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,
If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,
and so on $ cdots $
How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?
Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?
number-theory elementary-number-theory binomial-theorem
$endgroup$
4
$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32
$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02
1
$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12
add a comment |
$begingroup$
Let $x, r in mathbb{Q}$.
I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.
Which $x, r$ makes $(1+x)^r$ a rational number?
Answer:
If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,
If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,
and so on $ cdots $
How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?
Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?
number-theory elementary-number-theory binomial-theorem
$endgroup$
Let $x, r in mathbb{Q}$.
I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.
Which $x, r$ makes $(1+x)^r$ a rational number?
Answer:
If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,
If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,
and so on $ cdots $
How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?
Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?
number-theory elementary-number-theory binomial-theorem
number-theory elementary-number-theory binomial-theorem
asked Jan 2 at 11:28
arifamatharifamath
1176
1176
4
$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32
$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02
1
$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12
add a comment |
4
$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32
$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02
1
$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12
4
4
$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32
$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32
$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02
$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02
1
1
$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12
$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059365%2fhow-to-find-all-x-in-mathbbq-and-r-in-mathbbq-such-that-1xr-be%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059365%2fhow-to-find-all-x-in-mathbbq-and-r-in-mathbbq-such-that-1xr-be%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32
$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02
1
$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12