How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?












3












$begingroup$


Let $x, r in mathbb{Q}$.



I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.



Which $x, r$ makes $(1+x)^r$ a rational number?



Answer:



If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,



If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,



and so on $ cdots $



How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?



Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    $x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
    $endgroup$
    – Wojowu
    Jan 2 at 11:32












  • $begingroup$
    @Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
    $endgroup$
    – arifamath
    Jan 2 at 13:02








  • 1




    $begingroup$
    $x=(5/3)^2-1,r=1/2$.
    $endgroup$
    – Wojowu
    Jan 2 at 13:12
















3












$begingroup$


Let $x, r in mathbb{Q}$.



I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.



Which $x, r$ makes $(1+x)^r$ a rational number?



Answer:



If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,



If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,



and so on $ cdots $



How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?



Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?










share|cite|improve this question









$endgroup$








  • 4




    $begingroup$
    $x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
    $endgroup$
    – Wojowu
    Jan 2 at 11:32












  • $begingroup$
    @Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
    $endgroup$
    – arifamath
    Jan 2 at 13:02








  • 1




    $begingroup$
    $x=(5/3)^2-1,r=1/2$.
    $endgroup$
    – Wojowu
    Jan 2 at 13:12














3












3








3


2



$begingroup$


Let $x, r in mathbb{Q}$.



I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.



Which $x, r$ makes $(1+x)^r$ a rational number?



Answer:



If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,



If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,



and so on $ cdots $



How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?



Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?










share|cite|improve this question









$endgroup$




Let $x, r in mathbb{Q}$.



I need to find the conditions on $ x, r$ so that the value of $ large (1+x)^r$ is a rational number.



Which $x, r$ makes $(1+x)^r$ a rational number?



Answer:



If I take $x=frac{16}{9}$ and $r=frac{1}{2}$, then $ (1+x)^r=(1+frac{16}{9})^{frac{1}{2}}=sqrt{frac{25}{9}}=pm frac{5}{3} in mathbb{Q}$,



If I take $x=frac{19}{8}$ and $r=frac{1}{3}$, then $ (1+x)^r=(1+frac{19}{8})^{frac{1}{3}}=large sqrt[3]{frac{27}{8}}= frac{3}{2} in mathbb{Q}$,



and so on $ cdots $



How to find all $x in mathbb{Q}$ and $r in mathbb{Q}$ such that $(1+x)^r$ becomes a rational number?



Can you give me the general form of $x$ and $r$ so that $ (1+x)^r$ becomes a rational number?







number-theory elementary-number-theory binomial-theorem






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 2 at 11:28









arifamatharifamath

1176




1176








  • 4




    $begingroup$
    $x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
    $endgroup$
    – Wojowu
    Jan 2 at 11:32












  • $begingroup$
    @Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
    $endgroup$
    – arifamath
    Jan 2 at 13:02








  • 1




    $begingroup$
    $x=(5/3)^2-1,r=1/2$.
    $endgroup$
    – Wojowu
    Jan 2 at 13:12














  • 4




    $begingroup$
    $x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
    $endgroup$
    – Wojowu
    Jan 2 at 11:32












  • $begingroup$
    @Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
    $endgroup$
    – arifamath
    Jan 2 at 13:02








  • 1




    $begingroup$
    $x=(5/3)^2-1,r=1/2$.
    $endgroup$
    – Wojowu
    Jan 2 at 13:12








4




4




$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32






$begingroup$
$x=(a/b)^n-1,r=m/n$ with $a,b,m,n$ integers
$endgroup$
– Wojowu
Jan 2 at 11:32














$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02






$begingroup$
@Wojowu, Does it cover all possible choices? How do you match this formula for $x=frac{16}{9}, r=frac{1}{2}$ ?
$endgroup$
– arifamath
Jan 2 at 13:02






1




1




$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12




$begingroup$
$x=(5/3)^2-1,r=1/2$.
$endgroup$
– Wojowu
Jan 2 at 13:12










0






active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059365%2fhow-to-find-all-x-in-mathbbq-and-r-in-mathbbq-such-that-1xr-be%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3059365%2fhow-to-find-all-x-in-mathbbq-and-r-in-mathbbq-such-that-1xr-be%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna