Minimum value of $frac{b+1}{a+b-2}$












4












$begingroup$



If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.




Attempt:



Then I tried this way: Let $a= bk$ for some real $k$.



Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.



Please suggest an efficient way to solve it.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
    $endgroup$
    – YiFan
    Jul 15 '18 at 11:27
















4












$begingroup$



If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.




Attempt:



Then I tried this way: Let $a= bk$ for some real $k$.



Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.



Please suggest an efficient way to solve it.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
    $endgroup$
    – YiFan
    Jul 15 '18 at 11:27














4












4








4


3



$begingroup$



If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.




Attempt:



Then I tried this way: Let $a= bk$ for some real $k$.



Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.



Please suggest an efficient way to solve it.










share|cite|improve this question











$endgroup$





If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.




Attempt:



Then I tried this way: Let $a= bk$ for some real $k$.



Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.



Please suggest an efficient way to solve it.







calculus derivatives trigonometry optimization quadratics






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 2 at 11:42









greedoid

45.9k1160116




45.9k1160116










asked Jul 15 '18 at 11:02









AbcdAbcd

3,05531237




3,05531237








  • 1




    $begingroup$
    Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
    $endgroup$
    – YiFan
    Jul 15 '18 at 11:27














  • 1




    $begingroup$
    Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
    $endgroup$
    – YiFan
    Jul 15 '18 at 11:27








1




1




$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27




$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27










7 Answers
7






active

oldest

votes


















9












$begingroup$

Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.



Checking second derivatives, we have that $4/5$ is a minimum.



Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$





Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$






share|cite|improve this answer











$endgroup$









  • 4




    $begingroup$
    You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
    $endgroup$
    – Henry
    Jul 15 '18 at 11:24





















15












$begingroup$

Try with $b=cos 2x$ and $a= sin 2x$.



begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
&=& {2over -1+2tan x -3tan^2x}\
&=& {2over -1+2t -3t^2}
end{eqnarray}
where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$



So $$ u= {2over -{2over 3}} = -3implies ....$$






share|cite|improve this answer











$endgroup$









  • 2




    $begingroup$
    This was the first thing that came to my mind.
    $endgroup$
    – prog_SAHIL
    Jul 15 '18 at 11:33



















6












$begingroup$

Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$



So $ua+(u-1)b=1+2u$



Now Using Cauchy Schwarz Inequality



$displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$



So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$



So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$



So $displaystyle u^2 geq 9.$






share|cite|improve this answer











$endgroup$





















    5












    $begingroup$

    A bit geometry;



    1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.



    2) Minimum of $C$:



    $C:=dfrac{y+1}{x+y-2}$



    (Note: $x+y-2 not =0$).



    $C(x+y-2) = y+1$, or



    $Cx +y(C-1) -(2C+1)= 0$, a straight line.



    The line touches or intersects the circle 1)



    if the distance line-to-origin $le 1$ (radius).



    Distance to $(0,0):$



    $d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$



    $(2C+1)^2 le C^2 + (C-1)^2;$



    $4C^2 +4C +1 le 2C^2 -2C+1;$



    $2C(C+3) le 0.$



    Hence: $-3 le C le 0$.



    Minimum at $C =-3$.



    Used: Line to point distance formula:
    http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      What's the geometrical interpretation of minimum at C= -3 ?
      $endgroup$
      – Abcd
      Jul 15 '18 at 14:17










    • $begingroup$
      C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
      $endgroup$
      – Peter Szilas
      Jul 15 '18 at 16:10



















    4












    $begingroup$

    Just for a variation, using Lagrange’s method:
    $$
    f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
    $$
    Then
    begin{align}
    frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
    frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
    end{align}
    If these equal $0$, then
    $$
    -frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
    $$
    so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.



    The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
    $$
    f(0,-1,0)=frac{2}{3},quad
    f(3/5,4/5,0)=-3,quad
    $$
    This also shows the maximum.






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      Why should the partial derivatives equal 0?
      $endgroup$
      – Abcd
      Jul 18 '18 at 7:52










    • $begingroup$
      @Abcd Because we are looking for critical points.
      $endgroup$
      – egreg
      Jul 18 '18 at 8:10










    • $begingroup$
      With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
      $endgroup$
      – Abcd
      Jul 20 '18 at 2:10






    • 1




      $begingroup$
      @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
      $endgroup$
      – egreg
      Jul 20 '18 at 8:32



















    3












    $begingroup$

    Pulling a small rabbit from a hat, consider



    $$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$



    It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have



    $$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$



    and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      From



      $$
      frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
      $$



      So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition



      $$
      (2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
      $$



      and solving for $u$



      $$
      u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
      $$



      but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        Didn't understand why L should be a tangent and why it should tend to a
        $endgroup$
        – Abcd
        Jul 15 '18 at 11:40






      • 1




        $begingroup$
        Interesting method, though please explain the concepts used
        $endgroup$
        – Abcd
        Jul 15 '18 at 11:40










      • $begingroup$
        @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
        $endgroup$
        – Cesareo
        Jul 15 '18 at 13:43











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852399%2fminimum-value-of-fracb1ab-2%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      7 Answers
      7






      active

      oldest

      votes








      7 Answers
      7






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      9












      $begingroup$

      Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.



      Checking second derivatives, we have that $4/5$ is a minimum.



      Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$





      Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$






      share|cite|improve this answer











      $endgroup$









      • 4




        $begingroup$
        You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
        $endgroup$
        – Henry
        Jul 15 '18 at 11:24


















      9












      $begingroup$

      Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.



      Checking second derivatives, we have that $4/5$ is a minimum.



      Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$





      Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$






      share|cite|improve this answer











      $endgroup$









      • 4




        $begingroup$
        You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
        $endgroup$
        – Henry
        Jul 15 '18 at 11:24
















      9












      9








      9





      $begingroup$

      Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.



      Checking second derivatives, we have that $4/5$ is a minimum.



      Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$





      Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$






      share|cite|improve this answer











      $endgroup$



      Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.



      Checking second derivatives, we have that $4/5$ is a minimum.



      Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$





      Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jul 15 '18 at 18:39

























      answered Jul 15 '18 at 11:19









      TheSimpliFireTheSimpliFire

      12.7k62461




      12.7k62461








      • 4




        $begingroup$
        You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
        $endgroup$
        – Henry
        Jul 15 '18 at 11:24
















      • 4




        $begingroup$
        You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
        $endgroup$
        – Henry
        Jul 15 '18 at 11:24










      4




      4




      $begingroup$
      You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
      $endgroup$
      – Henry
      Jul 15 '18 at 11:24






      $begingroup$
      You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
      $endgroup$
      – Henry
      Jul 15 '18 at 11:24













      15












      $begingroup$

      Try with $b=cos 2x$ and $a= sin 2x$.



      begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
      &=& {2over -1+2tan x -3tan^2x}\
      &=& {2over -1+2t -3t^2}
      end{eqnarray}
      where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$



      So $$ u= {2over -{2over 3}} = -3implies ....$$






      share|cite|improve this answer











      $endgroup$









      • 2




        $begingroup$
        This was the first thing that came to my mind.
        $endgroup$
        – prog_SAHIL
        Jul 15 '18 at 11:33
















      15












      $begingroup$

      Try with $b=cos 2x$ and $a= sin 2x$.



      begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
      &=& {2over -1+2tan x -3tan^2x}\
      &=& {2over -1+2t -3t^2}
      end{eqnarray}
      where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$



      So $$ u= {2over -{2over 3}} = -3implies ....$$






      share|cite|improve this answer











      $endgroup$









      • 2




        $begingroup$
        This was the first thing that came to my mind.
        $endgroup$
        – prog_SAHIL
        Jul 15 '18 at 11:33














      15












      15








      15





      $begingroup$

      Try with $b=cos 2x$ and $a= sin 2x$.



      begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
      &=& {2over -1+2tan x -3tan^2x}\
      &=& {2over -1+2t -3t^2}
      end{eqnarray}
      where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$



      So $$ u= {2over -{2over 3}} = -3implies ....$$






      share|cite|improve this answer











      $endgroup$



      Try with $b=cos 2x$ and $a= sin 2x$.



      begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
      &=& {2over -1+2tan x -3tan^2x}\
      &=& {2over -1+2t -3t^2}
      end{eqnarray}
      where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$



      So $$ u= {2over -{2over 3}} = -3implies ....$$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jul 15 '18 at 11:28

























      answered Jul 15 '18 at 11:04









      greedoidgreedoid

      45.9k1160116




      45.9k1160116








      • 2




        $begingroup$
        This was the first thing that came to my mind.
        $endgroup$
        – prog_SAHIL
        Jul 15 '18 at 11:33














      • 2




        $begingroup$
        This was the first thing that came to my mind.
        $endgroup$
        – prog_SAHIL
        Jul 15 '18 at 11:33








      2




      2




      $begingroup$
      This was the first thing that came to my mind.
      $endgroup$
      – prog_SAHIL
      Jul 15 '18 at 11:33




      $begingroup$
      This was the first thing that came to my mind.
      $endgroup$
      – prog_SAHIL
      Jul 15 '18 at 11:33











      6












      $begingroup$

      Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$



      So $ua+(u-1)b=1+2u$



      Now Using Cauchy Schwarz Inequality



      $displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$



      So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$



      So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$



      So $displaystyle u^2 geq 9.$






      share|cite|improve this answer











      $endgroup$


















        6












        $begingroup$

        Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$



        So $ua+(u-1)b=1+2u$



        Now Using Cauchy Schwarz Inequality



        $displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$



        So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$



        So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$



        So $displaystyle u^2 geq 9.$






        share|cite|improve this answer











        $endgroup$
















          6












          6








          6





          $begingroup$

          Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$



          So $ua+(u-1)b=1+2u$



          Now Using Cauchy Schwarz Inequality



          $displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$



          So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$



          So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$



          So $displaystyle u^2 geq 9.$






          share|cite|improve this answer











          $endgroup$



          Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$



          So $ua+(u-1)b=1+2u$



          Now Using Cauchy Schwarz Inequality



          $displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$



          So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$



          So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$



          So $displaystyle u^2 geq 9.$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 18 '18 at 5:00

























          answered Jul 15 '18 at 11:51









          DXTDXT

          5,9692731




          5,9692731























              5












              $begingroup$

              A bit geometry;



              1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.



              2) Minimum of $C$:



              $C:=dfrac{y+1}{x+y-2}$



              (Note: $x+y-2 not =0$).



              $C(x+y-2) = y+1$, or



              $Cx +y(C-1) -(2C+1)= 0$, a straight line.



              The line touches or intersects the circle 1)



              if the distance line-to-origin $le 1$ (radius).



              Distance to $(0,0):$



              $d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$



              $(2C+1)^2 le C^2 + (C-1)^2;$



              $4C^2 +4C +1 le 2C^2 -2C+1;$



              $2C(C+3) le 0.$



              Hence: $-3 le C le 0$.



              Minimum at $C =-3$.



              Used: Line to point distance formula:
              http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                What's the geometrical interpretation of minimum at C= -3 ?
                $endgroup$
                – Abcd
                Jul 15 '18 at 14:17










              • $begingroup$
                C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
                $endgroup$
                – Peter Szilas
                Jul 15 '18 at 16:10
















              5












              $begingroup$

              A bit geometry;



              1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.



              2) Minimum of $C$:



              $C:=dfrac{y+1}{x+y-2}$



              (Note: $x+y-2 not =0$).



              $C(x+y-2) = y+1$, or



              $Cx +y(C-1) -(2C+1)= 0$, a straight line.



              The line touches or intersects the circle 1)



              if the distance line-to-origin $le 1$ (radius).



              Distance to $(0,0):$



              $d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$



              $(2C+1)^2 le C^2 + (C-1)^2;$



              $4C^2 +4C +1 le 2C^2 -2C+1;$



              $2C(C+3) le 0.$



              Hence: $-3 le C le 0$.



              Minimum at $C =-3$.



              Used: Line to point distance formula:
              http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                What's the geometrical interpretation of minimum at C= -3 ?
                $endgroup$
                – Abcd
                Jul 15 '18 at 14:17










              • $begingroup$
                C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
                $endgroup$
                – Peter Szilas
                Jul 15 '18 at 16:10














              5












              5








              5





              $begingroup$

              A bit geometry;



              1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.



              2) Minimum of $C$:



              $C:=dfrac{y+1}{x+y-2}$



              (Note: $x+y-2 not =0$).



              $C(x+y-2) = y+1$, or



              $Cx +y(C-1) -(2C+1)= 0$, a straight line.



              The line touches or intersects the circle 1)



              if the distance line-to-origin $le 1$ (radius).



              Distance to $(0,0):$



              $d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$



              $(2C+1)^2 le C^2 + (C-1)^2;$



              $4C^2 +4C +1 le 2C^2 -2C+1;$



              $2C(C+3) le 0.$



              Hence: $-3 le C le 0$.



              Minimum at $C =-3$.



              Used: Line to point distance formula:
              http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html






              share|cite|improve this answer











              $endgroup$



              A bit geometry;



              1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.



              2) Minimum of $C$:



              $C:=dfrac{y+1}{x+y-2}$



              (Note: $x+y-2 not =0$).



              $C(x+y-2) = y+1$, or



              $Cx +y(C-1) -(2C+1)= 0$, a straight line.



              The line touches or intersects the circle 1)



              if the distance line-to-origin $le 1$ (radius).



              Distance to $(0,0):$



              $d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$



              $(2C+1)^2 le C^2 + (C-1)^2;$



              $4C^2 +4C +1 le 2C^2 -2C+1;$



              $2C(C+3) le 0.$



              Hence: $-3 le C le 0$.



              Minimum at $C =-3$.



              Used: Line to point distance formula:
              http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jul 16 '18 at 7:22

























              answered Jul 15 '18 at 13:44









              Peter SzilasPeter Szilas

              11.4k2822




              11.4k2822












              • $begingroup$
                What's the geometrical interpretation of minimum at C= -3 ?
                $endgroup$
                – Abcd
                Jul 15 '18 at 14:17










              • $begingroup$
                C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
                $endgroup$
                – Peter Szilas
                Jul 15 '18 at 16:10


















              • $begingroup$
                What's the geometrical interpretation of minimum at C= -3 ?
                $endgroup$
                – Abcd
                Jul 15 '18 at 14:17










              • $begingroup$
                C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
                $endgroup$
                – Peter Szilas
                Jul 15 '18 at 16:10
















              $begingroup$
              What's the geometrical interpretation of minimum at C= -3 ?
              $endgroup$
              – Abcd
              Jul 15 '18 at 14:17




              $begingroup$
              What's the geometrical interpretation of minimum at C= -3 ?
              $endgroup$
              – Abcd
              Jul 15 '18 at 14:17












              $begingroup$
              C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
              $endgroup$
              – Peter Szilas
              Jul 15 '18 at 16:10




              $begingroup$
              C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
              $endgroup$
              – Peter Szilas
              Jul 15 '18 at 16:10











              4












              $begingroup$

              Just for a variation, using Lagrange’s method:
              $$
              f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
              $$
              Then
              begin{align}
              frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
              frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
              end{align}
              If these equal $0$, then
              $$
              -frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
              $$
              so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.



              The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
              $$
              f(0,-1,0)=frac{2}{3},quad
              f(3/5,4/5,0)=-3,quad
              $$
              This also shows the maximum.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Why should the partial derivatives equal 0?
                $endgroup$
                – Abcd
                Jul 18 '18 at 7:52










              • $begingroup$
                @Abcd Because we are looking for critical points.
                $endgroup$
                – egreg
                Jul 18 '18 at 8:10










              • $begingroup$
                With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
                $endgroup$
                – Abcd
                Jul 20 '18 at 2:10






              • 1




                $begingroup$
                @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
                $endgroup$
                – egreg
                Jul 20 '18 at 8:32
















              4












              $begingroup$

              Just for a variation, using Lagrange’s method:
              $$
              f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
              $$
              Then
              begin{align}
              frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
              frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
              end{align}
              If these equal $0$, then
              $$
              -frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
              $$
              so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.



              The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
              $$
              f(0,-1,0)=frac{2}{3},quad
              f(3/5,4/5,0)=-3,quad
              $$
              This also shows the maximum.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                Why should the partial derivatives equal 0?
                $endgroup$
                – Abcd
                Jul 18 '18 at 7:52










              • $begingroup$
                @Abcd Because we are looking for critical points.
                $endgroup$
                – egreg
                Jul 18 '18 at 8:10










              • $begingroup$
                With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
                $endgroup$
                – Abcd
                Jul 20 '18 at 2:10






              • 1




                $begingroup$
                @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
                $endgroup$
                – egreg
                Jul 20 '18 at 8:32














              4












              4








              4





              $begingroup$

              Just for a variation, using Lagrange’s method:
              $$
              f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
              $$
              Then
              begin{align}
              frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
              frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
              end{align}
              If these equal $0$, then
              $$
              -frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
              $$
              so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.



              The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
              $$
              f(0,-1,0)=frac{2}{3},quad
              f(3/5,4/5,0)=-3,quad
              $$
              This also shows the maximum.






              share|cite|improve this answer









              $endgroup$



              Just for a variation, using Lagrange’s method:
              $$
              f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
              $$
              Then
              begin{align}
              frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
              frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
              end{align}
              If these equal $0$, then
              $$
              -frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
              $$
              so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.



              The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
              $$
              f(0,-1,0)=frac{2}{3},quad
              f(3/5,4/5,0)=-3,quad
              $$
              This also shows the maximum.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jul 15 '18 at 13:27









              egregegreg

              183k1486205




              183k1486205












              • $begingroup$
                Why should the partial derivatives equal 0?
                $endgroup$
                – Abcd
                Jul 18 '18 at 7:52










              • $begingroup$
                @Abcd Because we are looking for critical points.
                $endgroup$
                – egreg
                Jul 18 '18 at 8:10










              • $begingroup$
                With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
                $endgroup$
                – Abcd
                Jul 20 '18 at 2:10






              • 1




                $begingroup$
                @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
                $endgroup$
                – egreg
                Jul 20 '18 at 8:32


















              • $begingroup$
                Why should the partial derivatives equal 0?
                $endgroup$
                – Abcd
                Jul 18 '18 at 7:52










              • $begingroup$
                @Abcd Because we are looking for critical points.
                $endgroup$
                – egreg
                Jul 18 '18 at 8:10










              • $begingroup$
                With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
                $endgroup$
                – Abcd
                Jul 20 '18 at 2:10






              • 1




                $begingroup$
                @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
                $endgroup$
                – egreg
                Jul 20 '18 at 8:32
















              $begingroup$
              Why should the partial derivatives equal 0?
              $endgroup$
              – Abcd
              Jul 18 '18 at 7:52




              $begingroup$
              Why should the partial derivatives equal 0?
              $endgroup$
              – Abcd
              Jul 18 '18 at 7:52












              $begingroup$
              @Abcd Because we are looking for critical points.
              $endgroup$
              – egreg
              Jul 18 '18 at 8:10




              $begingroup$
              @Abcd Because we are looking for critical points.
              $endgroup$
              – egreg
              Jul 18 '18 at 8:10












              $begingroup$
              With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
              $endgroup$
              – Abcd
              Jul 20 '18 at 2:10




              $begingroup$
              With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
              $endgroup$
              – Abcd
              Jul 20 '18 at 2:10




              1




              1




              $begingroup$
              @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
              $endgroup$
              – egreg
              Jul 20 '18 at 8:32




              $begingroup$
              @Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
              $endgroup$
              – egreg
              Jul 20 '18 at 8:32











              3












              $begingroup$

              Pulling a small rabbit from a hat, consider



              $$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$



              It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have



              $$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$



              and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.






              share|cite|improve this answer









              $endgroup$


















                3












                $begingroup$

                Pulling a small rabbit from a hat, consider



                $$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$



                It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have



                $$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$



                and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.






                share|cite|improve this answer









                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  Pulling a small rabbit from a hat, consider



                  $$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$



                  It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have



                  $$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$



                  and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.






                  share|cite|improve this answer









                  $endgroup$



                  Pulling a small rabbit from a hat, consider



                  $$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$



                  It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have



                  $$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$



                  and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jul 15 '18 at 14:47









                  Barry CipraBarry Cipra

                  59.9k654126




                  59.9k654126























                      2












                      $begingroup$

                      From



                      $$
                      frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
                      $$



                      So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition



                      $$
                      (2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
                      $$



                      and solving for $u$



                      $$
                      u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
                      $$



                      but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Didn't understand why L should be a tangent and why it should tend to a
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40






                      • 1




                        $begingroup$
                        Interesting method, though please explain the concepts used
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40










                      • $begingroup$
                        @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
                        $endgroup$
                        – Cesareo
                        Jul 15 '18 at 13:43
















                      2












                      $begingroup$

                      From



                      $$
                      frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
                      $$



                      So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition



                      $$
                      (2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
                      $$



                      and solving for $u$



                      $$
                      u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
                      $$



                      but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        Didn't understand why L should be a tangent and why it should tend to a
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40






                      • 1




                        $begingroup$
                        Interesting method, though please explain the concepts used
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40










                      • $begingroup$
                        @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
                        $endgroup$
                        – Cesareo
                        Jul 15 '18 at 13:43














                      2












                      2








                      2





                      $begingroup$

                      From



                      $$
                      frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
                      $$



                      So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition



                      $$
                      (2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
                      $$



                      and solving for $u$



                      $$
                      u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
                      $$



                      but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.






                      share|cite|improve this answer











                      $endgroup$



                      From



                      $$
                      frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
                      $$



                      So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition



                      $$
                      (2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
                      $$



                      and solving for $u$



                      $$
                      u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
                      $$



                      but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jul 15 '18 at 13:31

























                      answered Jul 15 '18 at 11:28









                      CesareoCesareo

                      9,2013517




                      9,2013517












                      • $begingroup$
                        Didn't understand why L should be a tangent and why it should tend to a
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40






                      • 1




                        $begingroup$
                        Interesting method, though please explain the concepts used
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40










                      • $begingroup$
                        @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
                        $endgroup$
                        – Cesareo
                        Jul 15 '18 at 13:43


















                      • $begingroup$
                        Didn't understand why L should be a tangent and why it should tend to a
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40






                      • 1




                        $begingroup$
                        Interesting method, though please explain the concepts used
                        $endgroup$
                        – Abcd
                        Jul 15 '18 at 11:40










                      • $begingroup$
                        @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
                        $endgroup$
                        – Cesareo
                        Jul 15 '18 at 13:43
















                      $begingroup$
                      Didn't understand why L should be a tangent and why it should tend to a
                      $endgroup$
                      – Abcd
                      Jul 15 '18 at 11:40




                      $begingroup$
                      Didn't understand why L should be a tangent and why it should tend to a
                      $endgroup$
                      – Abcd
                      Jul 15 '18 at 11:40




                      1




                      1




                      $begingroup$
                      Interesting method, though please explain the concepts used
                      $endgroup$
                      – Abcd
                      Jul 15 '18 at 11:40




                      $begingroup$
                      Interesting method, though please explain the concepts used
                      $endgroup$
                      – Abcd
                      Jul 15 '18 at 11:40












                      $begingroup$
                      @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
                      $endgroup$
                      – Cesareo
                      Jul 15 '18 at 13:43




                      $begingroup$
                      @Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
                      $endgroup$
                      – Cesareo
                      Jul 15 '18 at 13:43


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852399%2fminimum-value-of-fracb1ab-2%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna