Minimum value of $frac{b+1}{a+b-2}$
$begingroup$
If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.
Attempt:
Then I tried this way: Let $a= bk$ for some real $k$.
Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.
Please suggest an efficient way to solve it.
calculus derivatives trigonometry optimization quadratics
$endgroup$
add a comment |
$begingroup$
If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.
Attempt:
Then I tried this way: Let $a= bk$ for some real $k$.
Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.
Please suggest an efficient way to solve it.
calculus derivatives trigonometry optimization quadratics
$endgroup$
1
$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27
add a comment |
$begingroup$
If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.
Attempt:
Then I tried this way: Let $a= bk$ for some real $k$.
Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.
Please suggest an efficient way to solve it.
calculus derivatives trigonometry optimization quadratics
$endgroup$
If $a^2 + b^2= 1 $ and $u$ is the minimum value of the $dfrac{b+1}{a+b-2}$, then find the value of $u^2$.
Attempt:
Then I tried this way: Let $a= bk$ for some real $k$.
Then I got $f(b)$ in terms of b and k which is minmum when $b = dfrac{2-k}{2(k+1)}$ ... then again I got an equation in $k$ which didn't simplify.
Please suggest an efficient way to solve it.
calculus derivatives trigonometry optimization quadratics
calculus derivatives trigonometry optimization quadratics
edited Jan 2 at 11:42
greedoid
45.9k1160116
45.9k1160116
asked Jul 15 '18 at 11:02
AbcdAbcd
3,05531237
3,05531237
1
$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27
add a comment |
1
$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27
1
1
$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27
$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27
add a comment |
7 Answers
7
active
oldest
votes
$begingroup$
Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.
Checking second derivatives, we have that $4/5$ is a minimum.
Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$
Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$
$endgroup$
4
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
add a comment |
$begingroup$
Try with $b=cos 2x$ and $a= sin 2x$.
begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
&=& {2over -1+2tan x -3tan^2x}\
&=& {2over -1+2t -3t^2}
end{eqnarray}
where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$
So $$ u= {2over -{2over 3}} = -3implies ....$$
$endgroup$
2
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
add a comment |
$begingroup$
Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$
So $ua+(u-1)b=1+2u$
Now Using Cauchy Schwarz Inequality
$displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$
So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$
So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$
So $displaystyle u^2 geq 9.$
$endgroup$
add a comment |
$begingroup$
A bit geometry;
1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.
2) Minimum of $C$:
$C:=dfrac{y+1}{x+y-2}$
(Note: $x+y-2 not =0$).
$C(x+y-2) = y+1$, or
$Cx +y(C-1) -(2C+1)= 0$, a straight line.
The line touches or intersects the circle 1)
if the distance line-to-origin $le 1$ (radius).
Distance to $(0,0):$
$d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$
$(2C+1)^2 le C^2 + (C-1)^2;$
$4C^2 +4C +1 le 2C^2 -2C+1;$
$2C(C+3) le 0.$
Hence: $-3 le C le 0$.
Minimum at $C =-3$.
Used: Line to point distance formula:
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
$endgroup$
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
add a comment |
$begingroup$
Just for a variation, using Lagrange’s method:
$$
f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
$$
Then
begin{align}
frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
end{align}
If these equal $0$, then
$$
-frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
$$
so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.
The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
$$
f(0,-1,0)=frac{2}{3},quad
f(3/5,4/5,0)=-3,quad
$$
This also shows the maximum.
$endgroup$
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
1
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
add a comment |
$begingroup$
Pulling a small rabbit from a hat, consider
$$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$
It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have
$$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$
and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.
$endgroup$
add a comment |
$begingroup$
From
$$
frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
$$
So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition
$$
(2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
$$
and solving for $u$
$$
u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
$$
but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.
$endgroup$
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
1
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852399%2fminimum-value-of-fracb1ab-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.
Checking second derivatives, we have that $4/5$ is a minimum.
Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$
Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$
$endgroup$
4
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
add a comment |
$begingroup$
Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.
Checking second derivatives, we have that $4/5$ is a minimum.
Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$
Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$
$endgroup$
4
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
add a comment |
$begingroup$
Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.
Checking second derivatives, we have that $4/5$ is a minimum.
Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$
Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$
$endgroup$
Note that $$u=frac{b+1}{sqrt{1-b^2}+b-2}$$ so $$frac{du}{db}=frac{1big(sqrt{1-b^2}+b-2big)-(b+1)left(-frac{2b}{sqrt{1-b^2}}+1right)}{big(sqrt{1-b^2}+b-2big)^2}$$ and setting to zero gives $$-3sqrt{1-b^2}+b+1=0implies 1-b^2=frac{b^2+2b+1}9implies 5b^2+b-4=0$$ and we see that $b=4/5,-1$ are roots.
Checking second derivatives, we have that $4/5$ is a minimum.
Hence $$u^2=left(frac{frac45+1}{frac35+frac45-2}right)^2=9.$$
Note that the negative root ($-3/5$) is also possible, but that yields a lower value of $u^2$ since $$bigg|-frac35+frac45-2bigg|>bigg|frac35+frac45-2bigg|$$
edited Jul 15 '18 at 18:39
answered Jul 15 '18 at 11:19
TheSimpliFireTheSimpliFire
12.7k62461
12.7k62461
4
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
add a comment |
4
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
4
4
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
$begingroup$
You may need to consider $v=frac{b+1}{-sqrt{1-b^2}+b-2}$ as well
$endgroup$
– Henry
Jul 15 '18 at 11:24
add a comment |
$begingroup$
Try with $b=cos 2x$ and $a= sin 2x$.
begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
&=& {2over -1+2tan x -3tan^2x}\
&=& {2over -1+2t -3t^2}
end{eqnarray}
where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$
So $$ u= {2over -{2over 3}} = -3implies ....$$
$endgroup$
2
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
add a comment |
$begingroup$
Try with $b=cos 2x$ and $a= sin 2x$.
begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
&=& {2over -1+2tan x -3tan^2x}\
&=& {2over -1+2t -3t^2}
end{eqnarray}
where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$
So $$ u= {2over -{2over 3}} = -3implies ....$$
$endgroup$
2
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
add a comment |
$begingroup$
Try with $b=cos 2x$ and $a= sin 2x$.
begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
&=& {2over -1+2tan x -3tan^2x}\
&=& {2over -1+2t -3t^2}
end{eqnarray}
where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$
So $$ u= {2over -{2over 3}} = -3implies ....$$
$endgroup$
Try with $b=cos 2x$ and $a= sin 2x$.
begin{eqnarray}{b+1over a+b-2}&=& {2cos^2 xover -cos^2x+2sin x cos x -3sin^2x}\
&=& {2over -1+2tan x -3tan^2x}\
&=& {2over -1+2t -3t^2}
end{eqnarray}
where $t= tan x $. So the expression will take a minimum when quadratic function $g(t)=-3t^2+2t-1$ will take a maximum. Note that $g(t)<0$ for all $t in mathbb{R}$
So $$ u= {2over -{2over 3}} = -3implies ....$$
edited Jul 15 '18 at 11:28
answered Jul 15 '18 at 11:04
greedoidgreedoid
45.9k1160116
45.9k1160116
2
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
add a comment |
2
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
2
2
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
$begingroup$
This was the first thing that came to my mind.
$endgroup$
– prog_SAHIL
Jul 15 '18 at 11:33
add a comment |
$begingroup$
Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$
So $ua+(u-1)b=1+2u$
Now Using Cauchy Schwarz Inequality
$displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$
So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$
So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$
So $displaystyle u^2 geq 9.$
$endgroup$
add a comment |
$begingroup$
Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$
So $ua+(u-1)b=1+2u$
Now Using Cauchy Schwarz Inequality
$displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$
So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$
So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$
So $displaystyle u^2 geq 9.$
$endgroup$
add a comment |
$begingroup$
Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$
So $ua+(u-1)b=1+2u$
Now Using Cauchy Schwarz Inequality
$displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$
So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$
So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$
So $displaystyle u^2 geq 9.$
$endgroup$
Let $displaystyle u=frac{b+1}{a+b-2}Rightarrow ua+ub-2u=b+1$
So $ua+(u-1)b=1+2u$
Now Using Cauchy Schwarz Inequality
$displaystyle bigg[u^2+(u-1)^2bigg]cdot bigg[a^2+b^2bigg]geq bigg[ua+(u-1)bbigg]^2$
So $displaystyle 2u^2-2u+1geq (1+2u)^2Rightarrow 2u^2+6uleq 0$
So $displaystyle 2u(u+3)leq 0Rightarrow -3 leq uleq 0$
So $displaystyle u^2 geq 9.$
edited Jul 18 '18 at 5:00
answered Jul 15 '18 at 11:51
DXTDXT
5,9692731
5,9692731
add a comment |
add a comment |
$begingroup$
A bit geometry;
1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.
2) Minimum of $C$:
$C:=dfrac{y+1}{x+y-2}$
(Note: $x+y-2 not =0$).
$C(x+y-2) = y+1$, or
$Cx +y(C-1) -(2C+1)= 0$, a straight line.
The line touches or intersects the circle 1)
if the distance line-to-origin $le 1$ (radius).
Distance to $(0,0):$
$d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$
$(2C+1)^2 le C^2 + (C-1)^2;$
$4C^2 +4C +1 le 2C^2 -2C+1;$
$2C(C+3) le 0.$
Hence: $-3 le C le 0$.
Minimum at $C =-3$.
Used: Line to point distance formula:
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
$endgroup$
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
add a comment |
$begingroup$
A bit geometry;
1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.
2) Minimum of $C$:
$C:=dfrac{y+1}{x+y-2}$
(Note: $x+y-2 not =0$).
$C(x+y-2) = y+1$, or
$Cx +y(C-1) -(2C+1)= 0$, a straight line.
The line touches or intersects the circle 1)
if the distance line-to-origin $le 1$ (radius).
Distance to $(0,0):$
$d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$
$(2C+1)^2 le C^2 + (C-1)^2;$
$4C^2 +4C +1 le 2C^2 -2C+1;$
$2C(C+3) le 0.$
Hence: $-3 le C le 0$.
Minimum at $C =-3$.
Used: Line to point distance formula:
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
$endgroup$
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
add a comment |
$begingroup$
A bit geometry;
1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.
2) Minimum of $C$:
$C:=dfrac{y+1}{x+y-2}$
(Note: $x+y-2 not =0$).
$C(x+y-2) = y+1$, or
$Cx +y(C-1) -(2C+1)= 0$, a straight line.
The line touches or intersects the circle 1)
if the distance line-to-origin $le 1$ (radius).
Distance to $(0,0):$
$d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$
$(2C+1)^2 le C^2 + (C-1)^2;$
$4C^2 +4C +1 le 2C^2 -2C+1;$
$2C(C+3) le 0.$
Hence: $-3 le C le 0$.
Minimum at $C =-3$.
Used: Line to point distance formula:
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
$endgroup$
A bit geometry;
1)$x^2+y^2 = 1$, a circle, centre $(0,0)$, $r=1$.
2) Minimum of $C$:
$C:=dfrac{y+1}{x+y-2}$
(Note: $x+y-2 not =0$).
$C(x+y-2) = y+1$, or
$Cx +y(C-1) -(2C+1)= 0$, a straight line.
The line touches or intersects the circle 1)
if the distance line-to-origin $le 1$ (radius).
Distance to $(0,0):$
$d =dfrac{|2C+1|}{sqrt{C^2+(C-1)^2}} le 1.$
$(2C+1)^2 le C^2 + (C-1)^2;$
$4C^2 +4C +1 le 2C^2 -2C+1;$
$2C(C+3) le 0.$
Hence: $-3 le C le 0$.
Minimum at $C =-3$.
Used: Line to point distance formula:
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
edited Jul 16 '18 at 7:22
answered Jul 15 '18 at 13:44
Peter SzilasPeter Szilas
11.4k2822
11.4k2822
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
add a comment |
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
What's the geometrical interpretation of minimum at C= -3 ?
$endgroup$
– Abcd
Jul 15 '18 at 14:17
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
$begingroup$
C=-3 ; Line: -3x -4y +5=0 , y intercept 5/4 , slope: -3/4, distance from (0,0) : =1, hence a tangent to the circle. You can sketch it.
$endgroup$
– Peter Szilas
Jul 15 '18 at 16:10
add a comment |
$begingroup$
Just for a variation, using Lagrange’s method:
$$
f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
$$
Then
begin{align}
frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
end{align}
If these equal $0$, then
$$
-frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
$$
so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.
The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
$$
f(0,-1,0)=frac{2}{3},quad
f(3/5,4/5,0)=-3,quad
$$
This also shows the maximum.
$endgroup$
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
1
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
add a comment |
$begingroup$
Just for a variation, using Lagrange’s method:
$$
f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
$$
Then
begin{align}
frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
end{align}
If these equal $0$, then
$$
-frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
$$
so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.
The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
$$
f(0,-1,0)=frac{2}{3},quad
f(3/5,4/5,0)=-3,quad
$$
This also shows the maximum.
$endgroup$
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
1
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
add a comment |
$begingroup$
Just for a variation, using Lagrange’s method:
$$
f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
$$
Then
begin{align}
frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
end{align}
If these equal $0$, then
$$
-frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
$$
so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.
The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
$$
f(0,-1,0)=frac{2}{3},quad
f(3/5,4/5,0)=-3,quad
$$
This also shows the maximum.
$endgroup$
Just for a variation, using Lagrange’s method:
$$
f(a,b,t)=frac{b+1}{a+b-2}-t(a^2+b^2-1)
$$
Then
begin{align}
frac{partial f}{partial a}&=-frac{b+1}{(a+b-2)^2}-2at \[6px]
frac{partial f}{partial b}&=frac{a-3}{(a+b-2)^2}-2bt
end{align}
If these equal $0$, then
$$
-frac{b+1}{a(a+b-2)^2}=frac{a-3}{b(a+b-2)^2}
$$
so that $-b^2-b=a^2-3a$, that gives $3a-b=1$ and from $a^2+b^2=1$ we derive $a=0$ or $a=3/5$.
The critical points are thus $(0,-1)$ and $(3/5,4/5)$. We have
$$
f(0,-1,0)=frac{2}{3},quad
f(3/5,4/5,0)=-3,quad
$$
This also shows the maximum.
answered Jul 15 '18 at 13:27
egregegreg
183k1486205
183k1486205
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
1
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
add a comment |
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
1
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
Why should the partial derivatives equal 0?
$endgroup$
– Abcd
Jul 18 '18 at 7:52
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
@Abcd Because we are looking for critical points.
$endgroup$
– egreg
Jul 18 '18 at 8:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
$begingroup$
With respect to the maximum part, can't maximum be at the endpoints of the definition interval? How do we know if it is or not?
$endgroup$
– Abcd
Jul 20 '18 at 2:10
1
1
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
$begingroup$
@Abcd There's no “definition interval”: the function is restricted to the circle $a^2+b^2=1$, which is compact and has no “endpoints”.
$endgroup$
– egreg
Jul 20 '18 at 8:32
add a comment |
$begingroup$
Pulling a small rabbit from a hat, consider
$$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$
It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have
$$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$
and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.
$endgroup$
add a comment |
$begingroup$
Pulling a small rabbit from a hat, consider
$$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$
It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have
$$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$
and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.
$endgroup$
add a comment |
$begingroup$
Pulling a small rabbit from a hat, consider
$$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$
It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have
$$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$
and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.
$endgroup$
Pulling a small rabbit from a hat, consider
$$f(a,b)=3+{b+1over a+b-2}={3a+4b-5over a+b-2}$$
It's clear that $a^2+b^2=1$ implies $a+b-2lt0$. By Cauchy-Schwartz, we have
$$(3a+4b)^2le(a^2+b^2)(3^2+4^2)=25=5^2$$
and therefore $3a+4b-5le0$ if $a^2+b^2=1$. Thus $f(a,b)ge0$ for all $a$ and $b$ for which $a^2+b^2=1$. But also $f({3over5},{4over5})=0$, so the minimum value of $(b+1)/(a+b-2)=f(a,b)-3$ with $a^2+b^2=1$ is $-3$, the square of which is $9$.
answered Jul 15 '18 at 14:47
Barry CipraBarry Cipra
59.9k654126
59.9k654126
add a comment |
add a comment |
$begingroup$
From
$$
frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
$$
So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition
$$
(2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
$$
and solving for $u$
$$
u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
$$
but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.
$endgroup$
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
1
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
add a comment |
$begingroup$
From
$$
frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
$$
So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition
$$
(2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
$$
and solving for $u$
$$
u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
$$
but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.
$endgroup$
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
1
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
add a comment |
$begingroup$
From
$$
frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
$$
So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition
$$
(2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
$$
and solving for $u$
$$
u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
$$
but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.
$endgroup$
From
$$
frac{b+1}{a+b-2}= uRightarrow Lto a = 2-bfrac{b+1}{u}
$$
So $L$ should be tangent to $a^2+b^2=1;$ then substituting we have the condition
$$
(2b^2-4b+3)u^2+(4+2b-2b^2)u+(b+1)^2 = 0
$$
and solving for $u$
$$
u = frac{(b+1)^2}{b^2-bpmsqrt{(1-b) (b+1)^3}-2}
$$
but tangency implies on $sqrt{(1-b) (b+1)^3}=0;$ hence the solutions for tangency are $b = pm 1$ etc.
edited Jul 15 '18 at 13:31
answered Jul 15 '18 at 11:28
CesareoCesareo
9,2013517
9,2013517
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
1
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
add a comment |
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
1
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
Didn't understand why L should be a tangent and why it should tend to a
$endgroup$
– Abcd
Jul 15 '18 at 11:40
1
1
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
Interesting method, though please explain the concepts used
$endgroup$
– Abcd
Jul 15 '18 at 11:40
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
$begingroup$
@Abcd The problem $minmax u=f(a,b)$ s. t. $a^2+b^2-1=0$ when $f(a,b)$ is regular, is defined at the tangency points for $u=f(a,b)$ and $a^2+b^2-1=0$ At those points we have $u = {u_{min},cdots,u_{max}}$. This is the idea of Lagrange multipliers method.
$endgroup$
– Cesareo
Jul 15 '18 at 13:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852399%2fminimum-value-of-fracb1ab-2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Just an idea: you can interpret the question as having the points $(a,b)$ on the unit circle. Perhaps you can try creating a bijection by expressing $a$ and $b$ in terms of the angle $theta$.
$endgroup$
– YiFan
Jul 15 '18 at 11:27