prove $a,b,c$ in A.P if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$












1












$begingroup$



In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




My Attempt
$$
sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
$$

it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$



    In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




    My Attempt
    $$
    sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
    sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
    $$

    it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      0



      $begingroup$



      In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




      My Attempt
      $$
      sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
      sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
      $$

      it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?










      share|cite|improve this question









      $endgroup$





      In $Delta ABC$, if $tandfrac{A}{2}=dfrac{5}{6}$ and $tandfrac{C}{2}=dfrac{2}{5}$, then prove that the sides $a,b,c$ are in A.P.




      My Attempt
      $$
      sin A=frac{2.5}{6}.frac{36}{61}=frac{60}{61}\
      sin C=frac{2.2}{5}.frac{25}{29}=frac{20}{29}\
      $$

      it is solved in my reference some fomula involving $2s=a+b+c$, can I prove it using the basic known properties of triangles ?







      trigonometry triangle






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 4 at 16:37









      ss1729ss1729

      2,01511124




      2,01511124






















          4 Answers
          4






          active

          oldest

          votes


















          0












          $begingroup$

          $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



          Use



          $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            i was thinking of doing that straightaway .. but is there a better way other than this ?
            $endgroup$
            – ss1729
            Jan 4 at 16:50





















          0












          $begingroup$

          It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
          Can you finish now?






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Hint:



            Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



            $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






            share|cite|improve this answer









            $endgroup$





















              0












              $begingroup$

              You can first deduce
              $$
              tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
              frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
              =frac{20}{37}
              $$

              Therefore
              $$
              sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
              $$

              Similarly,
              $$
              sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
              $$

              By the sine law,
              $$
              frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
              bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
              $$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                4 Answers
                4






                active

                oldest

                votes








                4 Answers
                4






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                0












                $begingroup$

                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  i was thinking of doing that straightaway .. but is there a better way other than this ?
                  $endgroup$
                  – ss1729
                  Jan 4 at 16:50


















                0












                $begingroup$

                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






                share|cite|improve this answer











                $endgroup$













                • $begingroup$
                  i was thinking of doing that straightaway .. but is there a better way other than this ?
                  $endgroup$
                  – ss1729
                  Jan 4 at 16:50
















                0












                0








                0





                $begingroup$

                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$






                share|cite|improve this answer











                $endgroup$



                $$dfrac1{tandfrac B2}=cot B/2=tan(A/2+C/2)=?$$



                Use



                $$sin2x=dfrac{2tan x}{1+tan^2x}=?$$ for $2x=A,B,C$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 4 at 16:50

























                answered Jan 4 at 16:48









                lab bhattacharjeelab bhattacharjee

                226k15158275




                226k15158275












                • $begingroup$
                  i was thinking of doing that straightaway .. but is there a better way other than this ?
                  $endgroup$
                  – ss1729
                  Jan 4 at 16:50




















                • $begingroup$
                  i was thinking of doing that straightaway .. but is there a better way other than this ?
                  $endgroup$
                  – ss1729
                  Jan 4 at 16:50


















                $begingroup$
                i was thinking of doing that straightaway .. but is there a better way other than this ?
                $endgroup$
                – ss1729
                Jan 4 at 16:50






                $begingroup$
                i was thinking of doing that straightaway .. but is there a better way other than this ?
                $endgroup$
                – ss1729
                Jan 4 at 16:50













                0












                $begingroup$

                It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                Can you finish now?






                share|cite|improve this answer









                $endgroup$


















                  0












                  $begingroup$

                  It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                  Can you finish now?






                  share|cite|improve this answer









                  $endgroup$
















                    0












                    0








                    0





                    $begingroup$

                    It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                    Can you finish now?






                    share|cite|improve this answer









                    $endgroup$



                    It is $$tan(alpha/2)=frac{r}{s-a}$$ and $$tan(gamma/2)=frac{r}{s-c}$$ where $$s=frac{a+b+c}{2}$$ so we get $$frac{5}{6}(s-a)=frac{2}{5}(s-c)$$
                    Can you finish now?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 4 at 17:08









                    Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                    77.8k42866




                    77.8k42866























                        0












                        $begingroup$

                        Hint:



                        Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                        $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          Hint:



                          Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                          $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            Hint:



                            Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                            $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$






                            share|cite|improve this answer









                            $endgroup$



                            Hint:



                            Like In $Delta ABC$, find $cotdfrac{B}{2}.cotdfrac{C}{2}$ if $b+c=3a$,



                            $$2b=a+c$$ will hold true if $tandfrac A2tandfrac B2=dfrac13$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 4 at 17:25









                            lab bhattacharjeelab bhattacharjee

                            226k15158275




                            226k15158275























                                0












                                $begingroup$

                                You can first deduce
                                $$
                                tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                =frac{20}{37}
                                $$

                                Therefore
                                $$
                                sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                $$

                                Similarly,
                                $$
                                sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                $$

                                By the sine law,
                                $$
                                frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                $$






                                share|cite|improve this answer









                                $endgroup$


















                                  0












                                  $begingroup$

                                  You can first deduce
                                  $$
                                  tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                  frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                  =frac{20}{37}
                                  $$

                                  Therefore
                                  $$
                                  sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                  $$

                                  Similarly,
                                  $$
                                  sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                  $$

                                  By the sine law,
                                  $$
                                  frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                  bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    0












                                    0








                                    0





                                    $begingroup$

                                    You can first deduce
                                    $$
                                    tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                    frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                    =frac{20}{37}
                                    $$

                                    Therefore
                                    $$
                                    sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                    $$

                                    Similarly,
                                    $$
                                    sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                    $$

                                    By the sine law,
                                    $$
                                    frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                    bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$



                                    You can first deduce
                                    $$
                                    tanfrac{B}{2}=tanleft(frac{pi}{2}-frac{A+C}{2}right)=cotfrac{A+C}{2}=
                                    frac{1-tanfrac{A}{2}tanfrac{C}{2}}{tanfrac{A}{2}+tanfrac{C}{2}}=frac{2/3}{37/30}
                                    =frac{20}{37}
                                    $$

                                    Therefore
                                    $$
                                    sin A=frac{2(5/6)}{1+25/36}=frac{60}{61}
                                    $$

                                    Similarly,
                                    $$
                                    sin B=frac{1480}{1769}qquad sin C=frac{20}{29}
                                    $$

                                    By the sine law,
                                    $$
                                    frac{a+c}{2}=frac{b}{2sin B}(sin A+sin C)=
                                    bfrac{1769}{2960}left(frac{60}{61}+frac{20}{29}right)=b
                                    $$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 4 at 17:56









                                    egregegreg

                                    184k1486205




                                    184k1486205






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3061807%2fprove-a-b-c-in-a-p-if-tan-dfraca2-dfrac56-and-tan-dfracc2-d%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Bressuire

                                        Cabo Verde

                                        Gyllenstierna