Additivity of integral
$begingroup$
Let $a<c<b$. The function $f$ is integrable over $]a,b[ iff f$ is integrable over $]a,c[$ and $]c,b[$. We get: $int_a^bf=int_a^cf+int_c^bf $
In the proof of this theorem ($Leftarrow$), we take an arbitrary partition $pi_L$ of $]a,c[$ and a partition $pi_R$ of $]c,b[$. Then we consider the partition $pi := pi_L cup pi_R$ of $]a,b[$.
We get that $s_{pi_L}+s_{pi_R} = s_pi le underline{int_a^b} f$. Why does this equality hold here?
calculus
$endgroup$
add a comment |
$begingroup$
Let $a<c<b$. The function $f$ is integrable over $]a,b[ iff f$ is integrable over $]a,c[$ and $]c,b[$. We get: $int_a^bf=int_a^cf+int_c^bf $
In the proof of this theorem ($Leftarrow$), we take an arbitrary partition $pi_L$ of $]a,c[$ and a partition $pi_R$ of $]c,b[$. Then we consider the partition $pi := pi_L cup pi_R$ of $]a,b[$.
We get that $s_{pi_L}+s_{pi_R} = s_pi le underline{int_a^b} f$. Why does this equality hold here?
calculus
$endgroup$
add a comment |
$begingroup$
Let $a<c<b$. The function $f$ is integrable over $]a,b[ iff f$ is integrable over $]a,c[$ and $]c,b[$. We get: $int_a^bf=int_a^cf+int_c^bf $
In the proof of this theorem ($Leftarrow$), we take an arbitrary partition $pi_L$ of $]a,c[$ and a partition $pi_R$ of $]c,b[$. Then we consider the partition $pi := pi_L cup pi_R$ of $]a,b[$.
We get that $s_{pi_L}+s_{pi_R} = s_pi le underline{int_a^b} f$. Why does this equality hold here?
calculus
$endgroup$
Let $a<c<b$. The function $f$ is integrable over $]a,b[ iff f$ is integrable over $]a,c[$ and $]c,b[$. We get: $int_a^bf=int_a^cf+int_c^bf $
In the proof of this theorem ($Leftarrow$), we take an arbitrary partition $pi_L$ of $]a,c[$ and a partition $pi_R$ of $]c,b[$. Then we consider the partition $pi := pi_L cup pi_R$ of $]a,b[$.
We get that $s_{pi_L}+s_{pi_R} = s_pi le underline{int_a^b} f$. Why does this equality hold here?
calculus
calculus
asked Jan 12 at 8:09
ZacharyZachary
3229
3229
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The term $underline{int_a^b} f(x),dx$ is defined as the supremum of the set $s_{pi}$ where $pi$ is a generic partition of the interval $[a,b]$. In particular $pi_L cup pi_R$ is a partition of $[a,b]$ and
$$s_{pi_L cup pi_R}leq underline{int_a^b} f(x),dx.$$
Moreover, if $pi_L$ is $a=x_0<x_1<dots<x_n=c$ and $pi_R$ is $c=x_{n}<x_{n+1}<dots<x_{n+m}=b$ then $pi_L cup pi_R$ is $a=x_0<x_1<dots<x_{n+m}=b$ and
$$s_{pi_L}+s_{pi_R}=sum_{k=1}^n m_k(x_k-x_{k-1})+sum_{k=n+1}^{n+m} m_k(x_k-x_{k-1})=sum_{k=1}^{n+m}m_k(x_k-x_{k-1}) =s_{pi_L cup pi_R}$$
where $m_k=inf_{tin [x_{k-1},x_k]} f(t).$
$endgroup$
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070693%2fadditivity-of-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The term $underline{int_a^b} f(x),dx$ is defined as the supremum of the set $s_{pi}$ where $pi$ is a generic partition of the interval $[a,b]$. In particular $pi_L cup pi_R$ is a partition of $[a,b]$ and
$$s_{pi_L cup pi_R}leq underline{int_a^b} f(x),dx.$$
Moreover, if $pi_L$ is $a=x_0<x_1<dots<x_n=c$ and $pi_R$ is $c=x_{n}<x_{n+1}<dots<x_{n+m}=b$ then $pi_L cup pi_R$ is $a=x_0<x_1<dots<x_{n+m}=b$ and
$$s_{pi_L}+s_{pi_R}=sum_{k=1}^n m_k(x_k-x_{k-1})+sum_{k=n+1}^{n+m} m_k(x_k-x_{k-1})=sum_{k=1}^{n+m}m_k(x_k-x_{k-1}) =s_{pi_L cup pi_R}$$
where $m_k=inf_{tin [x_{k-1},x_k]} f(t).$
$endgroup$
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
add a comment |
$begingroup$
The term $underline{int_a^b} f(x),dx$ is defined as the supremum of the set $s_{pi}$ where $pi$ is a generic partition of the interval $[a,b]$. In particular $pi_L cup pi_R$ is a partition of $[a,b]$ and
$$s_{pi_L cup pi_R}leq underline{int_a^b} f(x),dx.$$
Moreover, if $pi_L$ is $a=x_0<x_1<dots<x_n=c$ and $pi_R$ is $c=x_{n}<x_{n+1}<dots<x_{n+m}=b$ then $pi_L cup pi_R$ is $a=x_0<x_1<dots<x_{n+m}=b$ and
$$s_{pi_L}+s_{pi_R}=sum_{k=1}^n m_k(x_k-x_{k-1})+sum_{k=n+1}^{n+m} m_k(x_k-x_{k-1})=sum_{k=1}^{n+m}m_k(x_k-x_{k-1}) =s_{pi_L cup pi_R}$$
where $m_k=inf_{tin [x_{k-1},x_k]} f(t).$
$endgroup$
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
add a comment |
$begingroup$
The term $underline{int_a^b} f(x),dx$ is defined as the supremum of the set $s_{pi}$ where $pi$ is a generic partition of the interval $[a,b]$. In particular $pi_L cup pi_R$ is a partition of $[a,b]$ and
$$s_{pi_L cup pi_R}leq underline{int_a^b} f(x),dx.$$
Moreover, if $pi_L$ is $a=x_0<x_1<dots<x_n=c$ and $pi_R$ is $c=x_{n}<x_{n+1}<dots<x_{n+m}=b$ then $pi_L cup pi_R$ is $a=x_0<x_1<dots<x_{n+m}=b$ and
$$s_{pi_L}+s_{pi_R}=sum_{k=1}^n m_k(x_k-x_{k-1})+sum_{k=n+1}^{n+m} m_k(x_k-x_{k-1})=sum_{k=1}^{n+m}m_k(x_k-x_{k-1}) =s_{pi_L cup pi_R}$$
where $m_k=inf_{tin [x_{k-1},x_k]} f(t).$
$endgroup$
The term $underline{int_a^b} f(x),dx$ is defined as the supremum of the set $s_{pi}$ where $pi$ is a generic partition of the interval $[a,b]$. In particular $pi_L cup pi_R$ is a partition of $[a,b]$ and
$$s_{pi_L cup pi_R}leq underline{int_a^b} f(x),dx.$$
Moreover, if $pi_L$ is $a=x_0<x_1<dots<x_n=c$ and $pi_R$ is $c=x_{n}<x_{n+1}<dots<x_{n+m}=b$ then $pi_L cup pi_R$ is $a=x_0<x_1<dots<x_{n+m}=b$ and
$$s_{pi_L}+s_{pi_R}=sum_{k=1}^n m_k(x_k-x_{k-1})+sum_{k=n+1}^{n+m} m_k(x_k-x_{k-1})=sum_{k=1}^{n+m}m_k(x_k-x_{k-1}) =s_{pi_L cup pi_R}$$
where $m_k=inf_{tin [x_{k-1},x_k]} f(t).$
edited Jan 12 at 8:29
answered Jan 12 at 8:20
Robert ZRobert Z
102k1072145
102k1072145
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
add a comment |
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
@Zachary Any further doubts?
$endgroup$
– Robert Z
Jan 12 at 8:40
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
$begingroup$
No, definitely not! Very clear explanation. Thank you!
$endgroup$
– Zachary
Jan 12 at 8:44
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3070693%2fadditivity-of-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown