Expressing $1-exp{(lambda_1p+lambda_3q)}$ as $x+y$, where $x$ is in terms of $lambda_1$ and $y$ is in terms...
$begingroup$
I have this simple equation
$$c = 1 - expleft(lambda_1 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right) + lambda_3 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right)right)$$
I will like to express this in the form $c = x + y$, where $x$ is in terms of $lambda_1$, and $y$ is in terms of $lambda_3$. How can I go about this?
I have tried basic expansion. However, it seems that there might be a mathematical rule to get out of this.
exponential-function
$endgroup$
add a comment |
$begingroup$
I have this simple equation
$$c = 1 - expleft(lambda_1 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right) + lambda_3 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right)right)$$
I will like to express this in the form $c = x + y$, where $x$ is in terms of $lambda_1$, and $y$ is in terms of $lambda_3$. How can I go about this?
I have tried basic expansion. However, it seems that there might be a mathematical rule to get out of this.
exponential-function
$endgroup$
4
$begingroup$
Cannot be done.
$endgroup$
– Gerry Myerson
Jan 11 at 14:55
add a comment |
$begingroup$
I have this simple equation
$$c = 1 - expleft(lambda_1 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right) + lambda_3 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right)right)$$
I will like to express this in the form $c = x + y$, where $x$ is in terms of $lambda_1$, and $y$ is in terms of $lambda_3$. How can I go about this?
I have tried basic expansion. However, it seems that there might be a mathematical rule to get out of this.
exponential-function
$endgroup$
I have this simple equation
$$c = 1 - expleft(lambda_1 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right) + lambda_3 R^2 left(frac{2pi}{3}-frac{sqrt{3}}{2}right)right)$$
I will like to express this in the form $c = x + y$, where $x$ is in terms of $lambda_1$, and $y$ is in terms of $lambda_3$. How can I go about this?
I have tried basic expansion. However, it seems that there might be a mathematical rule to get out of this.
exponential-function
exponential-function
edited Jan 12 at 2:48
Abdulhameed
asked Jan 11 at 14:26
AbdulhameedAbdulhameed
153115
153115
4
$begingroup$
Cannot be done.
$endgroup$
– Gerry Myerson
Jan 11 at 14:55
add a comment |
4
$begingroup$
Cannot be done.
$endgroup$
– Gerry Myerson
Jan 11 at 14:55
4
4
$begingroup$
Cannot be done.
$endgroup$
– Gerry Myerson
Jan 11 at 14:55
$begingroup$
Cannot be done.
$endgroup$
– Gerry Myerson
Jan 11 at 14:55
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Write $$c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Note first that $c(0,0)=1-e^0=0$.
Suppose we had the desired expression $c(lambda_1,lambda_3)=x(lambda_1)+y(lambda_3)$. Then:
$$x(lambda_1)+y(0)=c(lambda_1,0)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$$
$$x(0)+y(lambda_3)=c(0,lambda_3)=1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Adding the above, we get $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
But also we have $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=0+c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Hence $$1+e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Note that this can be written as $1+xy=x+y$, which can be rewritten as $0=xy-x-y+1=(x-1)(y-1)$ and therefore has solutions $x=1$ and $y=1$. Hence, IF we can decompose $c=x+y$ as desired, then either $1=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$ or $1=e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$. In the first case, $lambda_1=0$ (or $R=0$); in the second case, $lambda_3=0$ (or $R=0$). These can be all thought of as trivial.
If $Rlambda_1lambda_3neq 0$, then it is impossible to have a decomposition as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069885%2fexpressing-1-exp-lambda-1p-lambda-3q-as-xy-where-x-is-in-terms-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write $$c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Note first that $c(0,0)=1-e^0=0$.
Suppose we had the desired expression $c(lambda_1,lambda_3)=x(lambda_1)+y(lambda_3)$. Then:
$$x(lambda_1)+y(0)=c(lambda_1,0)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$$
$$x(0)+y(lambda_3)=c(0,lambda_3)=1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Adding the above, we get $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
But also we have $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=0+c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Hence $$1+e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Note that this can be written as $1+xy=x+y$, which can be rewritten as $0=xy-x-y+1=(x-1)(y-1)$ and therefore has solutions $x=1$ and $y=1$. Hence, IF we can decompose $c=x+y$ as desired, then either $1=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$ or $1=e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$. In the first case, $lambda_1=0$ (or $R=0$); in the second case, $lambda_3=0$ (or $R=0$). These can be all thought of as trivial.
If $Rlambda_1lambda_3neq 0$, then it is impossible to have a decomposition as desired.
$endgroup$
add a comment |
$begingroup$
Write $$c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Note first that $c(0,0)=1-e^0=0$.
Suppose we had the desired expression $c(lambda_1,lambda_3)=x(lambda_1)+y(lambda_3)$. Then:
$$x(lambda_1)+y(0)=c(lambda_1,0)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$$
$$x(0)+y(lambda_3)=c(0,lambda_3)=1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Adding the above, we get $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
But also we have $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=0+c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Hence $$1+e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Note that this can be written as $1+xy=x+y$, which can be rewritten as $0=xy-x-y+1=(x-1)(y-1)$ and therefore has solutions $x=1$ and $y=1$. Hence, IF we can decompose $c=x+y$ as desired, then either $1=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$ or $1=e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$. In the first case, $lambda_1=0$ (or $R=0$); in the second case, $lambda_3=0$ (or $R=0$). These can be all thought of as trivial.
If $Rlambda_1lambda_3neq 0$, then it is impossible to have a decomposition as desired.
$endgroup$
add a comment |
$begingroup$
Write $$c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Note first that $c(0,0)=1-e^0=0$.
Suppose we had the desired expression $c(lambda_1,lambda_3)=x(lambda_1)+y(lambda_3)$. Then:
$$x(lambda_1)+y(0)=c(lambda_1,0)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$$
$$x(0)+y(lambda_3)=c(0,lambda_3)=1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Adding the above, we get $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
But also we have $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=0+c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Hence $$1+e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Note that this can be written as $1+xy=x+y$, which can be rewritten as $0=xy-x-y+1=(x-1)(y-1)$ and therefore has solutions $x=1$ and $y=1$. Hence, IF we can decompose $c=x+y$ as desired, then either $1=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$ or $1=e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$. In the first case, $lambda_1=0$ (or $R=0$); in the second case, $lambda_3=0$ (or $R=0$). These can be all thought of as trivial.
If $Rlambda_1lambda_3neq 0$, then it is impossible to have a decomposition as desired.
$endgroup$
Write $$c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Note first that $c(0,0)=1-e^0=0$.
Suppose we had the desired expression $c(lambda_1,lambda_3)=x(lambda_1)+y(lambda_3)$. Then:
$$x(lambda_1)+y(0)=c(lambda_1,0)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$$
$$x(0)+y(lambda_3)=c(0,lambda_3)=1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Adding the above, we get $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=1 - e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+1 - e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
But also we have $$x(0)+y(0)+x(lambda_1)+y(lambda_3)=0+c(lambda_1,lambda_3)=1 - e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}$$
Hence $$1+e^{(lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) + lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}))}=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }+e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$$
Note that this can be written as $1+xy=x+y$, which can be rewritten as $0=xy-x-y+1=(x-1)(y-1)$ and therefore has solutions $x=1$ and $y=1$. Hence, IF we can decompose $c=x+y$ as desired, then either $1=e^{lambda_1 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2}) }$ or $1=e^{ lambda_3 R^2 (frac{2pi}{3}-frac{sqrt{3}}{2})}$. In the first case, $lambda_1=0$ (or $R=0$); in the second case, $lambda_3=0$ (or $R=0$). These can be all thought of as trivial.
If $Rlambda_1lambda_3neq 0$, then it is impossible to have a decomposition as desired.
answered Jan 12 at 2:22
vadim123vadim123
76.6k897191
76.6k897191
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069885%2fexpressing-1-exp-lambda-1p-lambda-3q-as-xy-where-x-is-in-terms-of%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Cannot be done.
$endgroup$
– Gerry Myerson
Jan 11 at 14:55