Find $limlimits_{n to infty}mathbb Pleft(frac1{sqrt n}sumlimits_{i=1}^nX_ile xright)$ if...












1












$begingroup$



Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.




Ideas:



I think it would be appropriate to use Borel-Cantelli.



Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$



Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$



Therefore $P(limsup A_{n})=P(A)=0$



This means that $P(A^{c})=1-P(A)=1$



So $A^c to 0$ a.s.



This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
    $endgroup$
    – Did
    Jan 10 at 15:53


















1












$begingroup$



Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.




Ideas:



I think it would be appropriate to use Borel-Cantelli.



Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$



Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$



Therefore $P(limsup A_{n})=P(A)=0$



This means that $P(A^{c})=1-P(A)=1$



So $A^c to 0$ a.s.



This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
    $endgroup$
    – Did
    Jan 10 at 15:53
















1












1








1





$begingroup$



Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.




Ideas:



I think it would be appropriate to use Borel-Cantelli.



Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$



Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$



Therefore $P(limsup A_{n})=P(A)=0$



This means that $P(A^{c})=1-P(A)=1$



So $A^c to 0$ a.s.



This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?










share|cite|improve this question











$endgroup$





Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.




Ideas:



I think it would be appropriate to use Borel-Cantelli.



Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$



Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$



Therefore $P(limsup A_{n})=P(A)=0$



This means that $P(A^{c})=1-P(A)=1$



So $A^c to 0$ a.s.



This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?







probability-theory borel-cantelli-lemmas






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 15:54









Did

249k23228466




249k23228466










asked Jan 10 at 15:50









SABOYSABOY

600311




600311












  • $begingroup$
    Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
    $endgroup$
    – Did
    Jan 10 at 15:53




















  • $begingroup$
    Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
    $endgroup$
    – Did
    Jan 10 at 15:53


















$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53






$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53












1 Answer
1






active

oldest

votes


















1












$begingroup$

Your idea of using Borel-Cantelli lemma is basically right. Let $$
A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
$$
Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
nge N(omega) Rightarrow X_n(omega) = 0.
$$
This shows
$$
lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
$$
for almost every $omega$, hence giving the result
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
$$
The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
$$
2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
$$
Therefore,
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
$$
My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068798%2ffind-lim-limits-n-to-infty-mathbb-p-left-frac1-sqrt-n-sum-limits-i-1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Your idea of using Borel-Cantelli lemma is basically right. Let $$
    A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
    $$
    Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
    nge N(omega) Rightarrow X_n(omega) = 0.
    $$
    This shows
    $$
    lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
    $$
    for almost every $omega$, hence giving the result
    $$
    lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
    $$
    The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
    $$
    2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
    $$
    Therefore,
    $$
    lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
    $$
    My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      Your idea of using Borel-Cantelli lemma is basically right. Let $$
      A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
      $$
      Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
      nge N(omega) Rightarrow X_n(omega) = 0.
      $$
      This shows
      $$
      lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
      $$
      for almost every $omega$, hence giving the result
      $$
      lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
      $$
      The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
      $$
      2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
      $$
      Therefore,
      $$
      lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
      $$
      My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        Your idea of using Borel-Cantelli lemma is basically right. Let $$
        A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
        $$
        Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
        nge N(omega) Rightarrow X_n(omega) = 0.
        $$
        This shows
        $$
        lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
        $$
        for almost every $omega$, hence giving the result
        $$
        lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
        $$
        The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
        $$
        2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
        $$
        Therefore,
        $$
        lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
        $$
        My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.






        share|cite|improve this answer











        $endgroup$



        Your idea of using Borel-Cantelli lemma is basically right. Let $$
        A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
        $$
        Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
        nge N(omega) Rightarrow X_n(omega) = 0.
        $$
        This shows
        $$
        lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
        $$
        for almost every $omega$, hence giving the result
        $$
        lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
        $$
        The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
        $$
        2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
        $$
        Therefore,
        $$
        lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
        $$
        My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 10 at 19:03

























        answered Jan 10 at 17:51









        SongSong

        18.6k21651




        18.6k21651






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068798%2ffind-lim-limits-n-to-infty-mathbb-p-left-frac1-sqrt-n-sum-limits-i-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna