Find $limlimits_{n to infty}mathbb Pleft(frac1{sqrt n}sumlimits_{i=1}^nX_ile xright)$ if...
$begingroup$
Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.
Ideas:
I think it would be appropriate to use Borel-Cantelli.
Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$
Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$
Therefore $P(limsup A_{n})=P(A)=0$
This means that $P(A^{c})=1-P(A)=1$
So $A^c to 0$ a.s.
This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?
probability-theory borel-cantelli-lemmas
$endgroup$
add a comment |
$begingroup$
Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.
Ideas:
I think it would be appropriate to use Borel-Cantelli.
Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$
Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$
Therefore $P(limsup A_{n})=P(A)=0$
This means that $P(A^{c})=1-P(A)=1$
So $A^c to 0$ a.s.
This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?
probability-theory borel-cantelli-lemmas
$endgroup$
$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53
add a comment |
$begingroup$
Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.
Ideas:
I think it would be appropriate to use Borel-Cantelli.
Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$
Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$
Therefore $P(limsup A_{n})=P(A)=0$
This means that $P(A^{c})=1-P(A)=1$
So $A^c to 0$ a.s.
This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?
probability-theory borel-cantelli-lemmas
$endgroup$
Let $(X_{n})_{n}$ be independent random variables such that $mathbb P(X_{n}=n)=mathbb P(X_{n}=-n)=frac{1}{2n^2}$ and $P(X_{n}=0)=1-frac{1}{n^2}$.
Find $lim_{n to infty}mathbb P(frac{1}{sqrt{n}}sum_{i=1}^{n}X_{i}leq x)$.
Ideas:
I think it would be appropriate to use Borel-Cantelli.
Set $A:={X neq 0}:={omegainOmega:X_{n}(omega)neq0, forall n in mathbb N}$ and $A_{n}:={X_{n}neq0}$
Note $sum_{n=1}^{infty}P(A_{n})=sum_{n=1}^{infty}frac{1}{n^2}<infty$
Therefore $P(limsup A_{n})=P(A)=0$
This means that $P(A^{c})=1-P(A)=1$
So $A^c to 0$ a.s.
This then implies stochastic convergence. I am unsure on my selection of $A$ and $A_{n}$ though. Any corrections, guidance or recommendations?
probability-theory borel-cantelli-lemmas
probability-theory borel-cantelli-lemmas
edited Jan 10 at 15:54
Did
249k23228466
249k23228466
asked Jan 10 at 15:50
SABOYSABOY
600311
600311
$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53
add a comment |
$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53
$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53
$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your idea of using Borel-Cantelli lemma is basically right. Let $$
A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
$$ Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
nge N(omega) Rightarrow X_n(omega) = 0.
$$ This shows
$$
lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
$$ for almost every $omega$, hence giving the result
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
$$ The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
$$
2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
$$ Therefore,
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
$$ My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068798%2ffind-lim-limits-n-to-infty-mathbb-p-left-frac1-sqrt-n-sum-limits-i-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your idea of using Borel-Cantelli lemma is basically right. Let $$
A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
$$ Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
nge N(omega) Rightarrow X_n(omega) = 0.
$$ This shows
$$
lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
$$ for almost every $omega$, hence giving the result
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
$$ The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
$$
2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
$$ Therefore,
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
$$ My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.
$endgroup$
add a comment |
$begingroup$
Your idea of using Borel-Cantelli lemma is basically right. Let $$
A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
$$ Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
nge N(omega) Rightarrow X_n(omega) = 0.
$$ This shows
$$
lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
$$ for almost every $omega$, hence giving the result
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
$$ The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
$$
2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
$$ Therefore,
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
$$ My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.
$endgroup$
add a comment |
$begingroup$
Your idea of using Borel-Cantelli lemma is basically right. Let $$
A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
$$ Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
nge N(omega) Rightarrow X_n(omega) = 0.
$$ This shows
$$
lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
$$ for almost every $omega$, hence giving the result
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
$$ The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
$$
2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
$$ Therefore,
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
$$ My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.
$endgroup$
Your idea of using Borel-Cantelli lemma is basically right. Let $$
A={X_n ne 0 text{ for infinitely many }ninmathbb{N}}.
$$ Since $sum_{n=1}^infty P(X_n ne 0)=sum_{n=1}^infty frac{1}{n^2}<infty$, Borel-Cantelli Lemma implies that $P(A) = 0$. So, for almost every $omega inOmega$, there exists $N(omega)inmathbb{N}$ such that$$
nge N(omega) Rightarrow X_n(omega) = 0.
$$ This shows
$$
lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^nX_i(omega) = lim_{ntoinfty}frac{1}{sqrt{n}}sum_{i=1}^{N(omega)-1}X_i(omega)=0
$$ for almost every $omega$, hence giving the result
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile xright) =begin{cases} 1,quad x>0\0,quad x<0end{cases}.
$$ The case $x=0$ is more subtle. Note that by the symmetry of the distribution, we have
$$
2Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ige 0right)=1+Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_i=0right).
$$ Therefore,
$$
lim_{nto infty} Pleft(frac{1}{sqrt{n}}sum_{i=1}^nX_ile 0right)=frac{1}{2}+frac{1}{2}lim_{nto infty} Pleft(sum_{i=1}^nX_i =0right).
$$ My guess is that $lim_{ntoinfty} Pleft(sum_{i=1}^nX_i =0right)=0$, but as of now, I'm not sure.
edited Jan 10 at 19:03
answered Jan 10 at 17:51
SongSong
18.6k21651
18.6k21651
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068798%2ffind-lim-limits-n-to-infty-mathbb-p-left-frac1-sqrt-n-sum-limits-i-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Your choice of $A$ is absurd. Next, the conclusion that $P(limsup A_n)=0$ holds. Later on, the assertion that $A^c to 0$ a.s., is absurd. Can you revise these steps?
$endgroup$
– Did
Jan 10 at 15:53