Properties of Schwartz functions
$begingroup$
Let $f$ in Schwartz space, and $K, gamma >0$.
Then I guess the following:
begin{align}
int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
end{align}
I did this calculation but I think that I am wrong or maybe not, Where am I wrong?
definite-integrals continuity schwartz-space
$endgroup$
add a comment |
$begingroup$
Let $f$ in Schwartz space, and $K, gamma >0$.
Then I guess the following:
begin{align}
int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
end{align}
I did this calculation but I think that I am wrong or maybe not, Where am I wrong?
definite-integrals continuity schwartz-space
$endgroup$
add a comment |
$begingroup$
Let $f$ in Schwartz space, and $K, gamma >0$.
Then I guess the following:
begin{align}
int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
end{align}
I did this calculation but I think that I am wrong or maybe not, Where am I wrong?
definite-integrals continuity schwartz-space
$endgroup$
Let $f$ in Schwartz space, and $K, gamma >0$.
Then I guess the following:
begin{align}
int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
end{align}
I did this calculation but I think that I am wrong or maybe not, Where am I wrong?
definite-integrals continuity schwartz-space
definite-integrals continuity schwartz-space
edited Jan 13 at 14:40
Davide Giraudo
128k17156268
128k17156268
asked Jan 10 at 20:57
ManiMani
92
92
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.
The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.
$endgroup$
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069163%2fproperties-of-schwartz-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.
The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.
$endgroup$
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
add a comment |
$begingroup$
Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.
The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.
$endgroup$
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
add a comment |
$begingroup$
Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.
The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.
$endgroup$
Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.
The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.
answered Jan 10 at 21:07
Davide GiraudoDavide Giraudo
128k17156268
128k17156268
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
add a comment |
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
$endgroup$
– Mani
Jan 10 at 22:07
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
$begingroup$
But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
$endgroup$
– Davide Giraudo
Jan 12 at 11:49
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069163%2fproperties-of-schwartz-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown