Properties of Schwartz functions












0












$begingroup$


Let $f$ in Schwartz space, and $K, gamma >0$.
Then I guess the following:
begin{align}
int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
end{align}



I did this calculation but I think that I am wrong or maybe not, Where am I wrong?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Let $f$ in Schwartz space, and $K, gamma >0$.
    Then I guess the following:
    begin{align}
    int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
    end{align}



    I did this calculation but I think that I am wrong or maybe not, Where am I wrong?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Let $f$ in Schwartz space, and $K, gamma >0$.
      Then I guess the following:
      begin{align}
      int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
      end{align}



      I did this calculation but I think that I am wrong or maybe not, Where am I wrong?










      share|cite|improve this question











      $endgroup$




      Let $f$ in Schwartz space, and $K, gamma >0$.
      Then I guess the following:
      begin{align}
      int _{ -k }^{ -gamma }{ left| f(x) right| dx } +int _{ gamma }^{ k }{ left| f(x) right| dx } &=int _{ -k }^{ -gamma }{ frac { x }{ x } left| f(x) right| dx } +int _{ gamma }^{ k }{ frac { x }{ x } left| f(x) right| dx } \ &le { left| f right| }_{ 1,0 }int _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ -gamma }^{ -k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &={ -left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } +{ left| f right| }_{ 1,0 }int _{ gamma }^{ k }{ frac { 1 }{ x } dx } \ &=0
      end{align}



      I did this calculation but I think that I am wrong or maybe not, Where am I wrong?







      definite-integrals continuity schwartz-space






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 13 at 14:40









      Davide Giraudo

      128k17156268




      128k17156268










      asked Jan 10 at 20:57









      ManiMani

      92




      92






















          1 Answer
          1






          active

          oldest

          votes


















          0












          $begingroup$

          Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.



          The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
            $endgroup$
            – Mani
            Jan 10 at 22:07










          • $begingroup$
            But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
            $endgroup$
            – Davide Giraudo
            Jan 12 at 11:49












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069163%2fproperties-of-schwartz-functions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          0












          $begingroup$

          Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.



          The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
            $endgroup$
            – Mani
            Jan 10 at 22:07










          • $begingroup$
            But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
            $endgroup$
            – Davide Giraudo
            Jan 12 at 11:49
















          0












          $begingroup$

          Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.



          The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
            $endgroup$
            – Mani
            Jan 10 at 22:07










          • $begingroup$
            But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
            $endgroup$
            – Davide Giraudo
            Jan 12 at 11:49














          0












          0








          0





          $begingroup$

          Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.



          The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.






          share|cite|improve this answer









          $endgroup$



          Actually this would be correct if and only if $f$ vanishes on both intervals $(-k,-gamma)$ and $(gamma,k)$.



          The problem is in the first inequality: on $(-k,-gamma)$, $x$ is negative hence the integral $int_{-k}^{-gamma}1/xmathrm dx$ should be $-int_{-k}^{-gamma}1/xmathrm dx$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 10 at 21:07









          Davide GiraudoDavide Giraudo

          128k17156268




          128k17156268












          • $begingroup$
            Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
            $endgroup$
            – Mani
            Jan 10 at 22:07










          • $begingroup$
            But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
            $endgroup$
            – Davide Giraudo
            Jan 12 at 11:49


















          • $begingroup$
            Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
            $endgroup$
            – Mani
            Jan 10 at 22:07










          • $begingroup$
            But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
            $endgroup$
            – Davide Giraudo
            Jan 12 at 11:49
















          $begingroup$
          Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
          $endgroup$
          – Mani
          Jan 10 at 22:07




          $begingroup$
          Sorry, can you explain me a litle bit more?. In this integral, I put x<0. $int _{ -k }^{ -gamma }{ left| f(x) right| dx }=int _{ -k }^{ -gamma }{ left| f(x) right| dx } le Cint _{ -k }^{ -gamma }{ frac { 1 }{ x } dx } $ . if I set x<0. Why do you change the sign in the last integral?
          $endgroup$
          – Mani
          Jan 10 at 22:07












          $begingroup$
          But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
          $endgroup$
          – Davide Giraudo
          Jan 12 at 11:49




          $begingroup$
          But we only know that $leftlvert xrightrvert leftlvert f(x)rightrvertleqslant C$ hence the bound should be $Cint _{ -k }^{ -gamma }{ frac { 1 }{ leftlvert xrightrvert } dx }$.
          $endgroup$
          – Davide Giraudo
          Jan 12 at 11:49


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3069163%2fproperties-of-schwartz-functions%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna