Computing the Lebesgue integral over a ball











up vote
0
down vote

favorite












Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.



Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$



For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$



and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?



Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?



I tried:



$f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.



So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.



For computing the integrals, I thought about using the transformation formula:



$int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$



Here I don't know how to continue. Is this method correct or is there another way to do this?










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.



    Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$



    For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$



    and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?



    Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?



    I tried:



    $f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.



    So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.



    For computing the integrals, I thought about using the transformation formula:



    $int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$



    Here I don't know how to continue. Is this method correct or is there another way to do this?










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.



      Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$



      For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$



      and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?



      Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?



      I tried:



      $f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.



      So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.



      For computing the integrals, I thought about using the transformation formula:



      $int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$



      Here I don't know how to continue. Is this method correct or is there another way to do this?










      share|cite|improve this question















      Let $alpha in mathbb{R}$ and $lambda_n$ the Lebesgue measure on $mathbb{R^n}$.



      Define $f:mathbb{R^n}backslash(0)tomathbb{R}, f(x)=leftlVert xrightrVert^alpha$



      For which $alpha$ is $f$ Lebesgue integrable on $B_1(0):=lbrace x in mathbb{R^n}:leftlVert xrightrVert leq 1 rbrace$



      and for which $alpha$ on $mathbb{R^n}backslash B_1(0)$?



      Also, how to compute $int_{B_1(0)}f dlambda_n$ and $int_{mathbb{R^n}backslash B_1(0)}f dlambda_n$ if $f$ is integrable?



      I tried:



      $f$ is Lebesgue integrable on $B_1(0) Leftrightarrowint_{B_1(0)}|f| dlambda_n<infty$.



      So if $alpha<infty$, then $f(x)$ is Lebesgue integrable.



      For computing the integrals, I thought about using the transformation formula:



      $int_{B_1(0)}leftlVert xrightrVert^alpha dlambda_n=alpha cdot int_{0}^{1}r^n d lambda_r$



      Here I don't know how to continue. Is this method correct or is there another way to do this?







      measure-theory lebesgue-integral lebesgue-measure






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 at 16:52

























      asked Dec 1 at 13:48









      Olsgur

      444




      444






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          accepted










          Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
          $$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
          whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021360%2fcomputing-the-lebesgue-integral-over-a-ball%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            accepted










            Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
            $$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
            whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.






            share|cite|improve this answer

























              up vote
              0
              down vote



              accepted










              Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
              $$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
              whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.






              share|cite|improve this answer























                up vote
                0
                down vote



                accepted







                up vote
                0
                down vote



                accepted






                Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
                $$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
                whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.






                share|cite|improve this answer












                Consider spherical shells $S_{a,b}:={xin{mathbb R}^n,|,aleq|x|leq b}$. One then has
                $$int_{S_{a,b}}|x|^alpha {rm d}(x)=omega_{n-1}int_a^b r^alpha>r^{n+1}>dr ,$$
                whereby $omega_{n-1}$ denotes the $(n-1)$-dimensional surface area of $S^{n-1}subset{mathbb R}^n$. Now see what happens when $ato0+$ or $btoinfty$ for various values of $n$ and $alpha$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Dec 1 at 17:03









                Christian Blatter

                171k7111325




                171k7111325






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3021360%2fcomputing-the-lebesgue-integral-over-a-ball%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna