Find limit $limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)$
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}displaystyle -sqrt{2x^{4}}right)$
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)$$displaystyle =displaystyle limlimits _{xrightarrow infty }dfrac{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }} =$
$displaystyle =limlimits _{xrightarrow infty }dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}$
What is the next step should be? Please help!
real-analysis limits radicals limits-without-lhopital
add a comment |
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}displaystyle -sqrt{2x^{4}}right)$
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)$$displaystyle =displaystyle limlimits _{xrightarrow infty }dfrac{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }} =$
$displaystyle =limlimits _{xrightarrow infty }dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}$
What is the next step should be? Please help!
real-analysis limits radicals limits-without-lhopital
See math.stackexchange.com/questions/3025375/…
– lab bhattacharjee
Dec 8 at 9:47
add a comment |
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}displaystyle -sqrt{2x^{4}}right)$
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)$$displaystyle =displaystyle limlimits _{xrightarrow infty }dfrac{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }} =$
$displaystyle =limlimits _{xrightarrow infty }dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}$
What is the next step should be? Please help!
real-analysis limits radicals limits-without-lhopital
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}displaystyle -sqrt{2x^{4}}right)$
$displaystyle limlimits _{xrightarrow infty }left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)$$displaystyle =displaystyle limlimits _{xrightarrow infty }dfrac{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} -sqrt{2x^{4}}right)left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }} =$
$displaystyle =limlimits _{xrightarrow infty }dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}$
What is the next step should be? Please help!
real-analysis limits radicals limits-without-lhopital
real-analysis limits radicals limits-without-lhopital
edited Dec 13 at 13:43
Martin Sleziak
44.6k7115270
44.6k7115270
asked Dec 8 at 9:43
Angella
111
111
See math.stackexchange.com/questions/3025375/…
– lab bhattacharjee
Dec 8 at 9:47
add a comment |
See math.stackexchange.com/questions/3025375/…
– lab bhattacharjee
Dec 8 at 9:47
See math.stackexchange.com/questions/3025375/…
– lab bhattacharjee
Dec 8 at 9:47
See math.stackexchange.com/questions/3025375/…
– lab bhattacharjee
Dec 8 at 9:47
add a comment |
4 Answers
4
active
oldest
votes
Now, use that
$$sqrt{x^4+1}-x^2=frac{1}{sqrt{x^4+1}+x^2}.$$
add a comment |
Use the trick twice for the numerator to obtain
$$dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}=dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdot dfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}=$$
$$=dfrac{x^4}{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)left(x^{2}sqrt{x^{4} +1} +x^{4}right)}simfrac{1}{4sqrt 2 x^2}to 0$$
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
add a comment |
$$
sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^4}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdotfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}\=frac{x^4}{big(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}big)big(x^{2}sqrt{x^{4} +1}+x^4big)}\=frac{1}{big(sqrt{1 +sqrt{1+x^{-4}}} +sqrt{2}big)big(sqrt{x^{4}+1}+x^2big)},to,0
$$
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
add a comment |
Another approach is using substitution $x=cot t$:
begin{align}
lim_{xtoinfty}left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^{4}}right)
&=lim_{tto0}dfrac{sqrt{cos^2t+cos t}-sqrt{2cos^2t}}{sin t} \
&=lim_{tto0}dfrac{cos t(1-cos t)}{sin t(sqrt{cos^2t+cos t}+sqrt{2cos^2t})} \
&=lim_{tto0}dfrac{cos t}{sqrt{cos^2t+cos t}+sqrt{2cos^2t}}dfrac{2sin^2frac{t}{2}}{frac{t^2}{2}}dfrac{t}{sin t}dfrac{t}{2} \
&=color{blue}{0}
end{align}
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
Of course it is :)
– Nosrati
Dec 8 at 11:20
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
|
show 1 more comment
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030896%2ffind-limit-lim-limits-x-rightarrow-infty-left-sqrtx4-x2-sqrtx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Now, use that
$$sqrt{x^4+1}-x^2=frac{1}{sqrt{x^4+1}+x^2}.$$
add a comment |
Now, use that
$$sqrt{x^4+1}-x^2=frac{1}{sqrt{x^4+1}+x^2}.$$
add a comment |
Now, use that
$$sqrt{x^4+1}-x^2=frac{1}{sqrt{x^4+1}+x^2}.$$
Now, use that
$$sqrt{x^4+1}-x^2=frac{1}{sqrt{x^4+1}+x^2}.$$
answered Dec 8 at 9:44
Michael Rozenberg
95.4k1588184
95.4k1588184
add a comment |
add a comment |
Use the trick twice for the numerator to obtain
$$dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}=dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdot dfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}=$$
$$=dfrac{x^4}{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)left(x^{2}sqrt{x^{4} +1} +x^{4}right)}simfrac{1}{4sqrt 2 x^2}to 0$$
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
add a comment |
Use the trick twice for the numerator to obtain
$$dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}=dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdot dfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}=$$
$$=dfrac{x^4}{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)left(x^{2}sqrt{x^{4} +1} +x^{4}right)}simfrac{1}{4sqrt 2 x^2}to 0$$
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
add a comment |
Use the trick twice for the numerator to obtain
$$dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}=dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdot dfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}=$$
$$=dfrac{x^4}{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)left(x^{2}sqrt{x^{4} +1} +x^{4}right)}simfrac{1}{4sqrt 2 x^2}to 0$$
Use the trick twice for the numerator to obtain
$$dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}=dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdot dfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}=$$
$$=dfrac{x^4}{left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }right)left(x^{2}sqrt{x^{4} +1} +x^{4}right)}simfrac{1}{4sqrt 2 x^2}to 0$$
edited Dec 8 at 11:07
answered Dec 8 at 9:45
gimusi
1
1
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
add a comment |
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
@user376343 Opsss yes of course I fix the typo! Thanks
– gimusi
Dec 8 at 11:07
add a comment |
$$
sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^4}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdotfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}\=frac{x^4}{big(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}big)big(x^{2}sqrt{x^{4} +1}+x^4big)}\=frac{1}{big(sqrt{1 +sqrt{1+x^{-4}}} +sqrt{2}big)big(sqrt{x^{4}+1}+x^2big)},to,0
$$
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
add a comment |
$$
sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^4}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdotfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}\=frac{x^4}{big(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}big)big(x^{2}sqrt{x^{4} +1}+x^4big)}\=frac{1}{big(sqrt{1 +sqrt{1+x^{-4}}} +sqrt{2}big)big(sqrt{x^{4}+1}+x^2big)},to,0
$$
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
add a comment |
$$
sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^4}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdotfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}\=frac{x^4}{big(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}big)big(x^{2}sqrt{x^{4} +1}+x^4big)}\=frac{1}{big(sqrt{1 +sqrt{1+x^{-4}}} +sqrt{2}big)big(sqrt{x^{4}+1}+x^2big)},to,0
$$
$$
sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^4}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}}=
dfrac{x^{2}sqrt{x^{4} +1} -x^{4}}{sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4} }}cdotfrac{x^{2}sqrt{x^{4} +1} +x^{4}}{x^{2}sqrt{x^{4} +1} +x^{4}}\=frac{x^4}{big(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}} +sqrt{2x^{4}}big)big(x^{2}sqrt{x^{4} +1}+x^4big)}\=frac{1}{big(sqrt{1 +sqrt{1+x^{-4}}} +sqrt{2}big)big(sqrt{x^{4}+1}+x^2big)},to,0
$$
edited Dec 8 at 10:07
answered Dec 8 at 10:00
Yiorgos S. Smyrlis
62.4k1383162
62.4k1383162
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
add a comment |
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
Are you sure, Yiorgos?
– Michael Rozenberg
Dec 8 at 10:01
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
You have divided twice by $x^4$.
– gimusi
Dec 8 at 10:05
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
@gimusi You are right! - Corrected it!
– Yiorgos S. Smyrlis
Dec 8 at 10:07
add a comment |
Another approach is using substitution $x=cot t$:
begin{align}
lim_{xtoinfty}left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^{4}}right)
&=lim_{tto0}dfrac{sqrt{cos^2t+cos t}-sqrt{2cos^2t}}{sin t} \
&=lim_{tto0}dfrac{cos t(1-cos t)}{sin t(sqrt{cos^2t+cos t}+sqrt{2cos^2t})} \
&=lim_{tto0}dfrac{cos t}{sqrt{cos^2t+cos t}+sqrt{2cos^2t}}dfrac{2sin^2frac{t}{2}}{frac{t^2}{2}}dfrac{t}{sin t}dfrac{t}{2} \
&=color{blue}{0}
end{align}
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
Of course it is :)
– Nosrati
Dec 8 at 11:20
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
|
show 1 more comment
Another approach is using substitution $x=cot t$:
begin{align}
lim_{xtoinfty}left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^{4}}right)
&=lim_{tto0}dfrac{sqrt{cos^2t+cos t}-sqrt{2cos^2t}}{sin t} \
&=lim_{tto0}dfrac{cos t(1-cos t)}{sin t(sqrt{cos^2t+cos t}+sqrt{2cos^2t})} \
&=lim_{tto0}dfrac{cos t}{sqrt{cos^2t+cos t}+sqrt{2cos^2t}}dfrac{2sin^2frac{t}{2}}{frac{t^2}{2}}dfrac{t}{sin t}dfrac{t}{2} \
&=color{blue}{0}
end{align}
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
Of course it is :)
– Nosrati
Dec 8 at 11:20
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
|
show 1 more comment
Another approach is using substitution $x=cot t$:
begin{align}
lim_{xtoinfty}left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^{4}}right)
&=lim_{tto0}dfrac{sqrt{cos^2t+cos t}-sqrt{2cos^2t}}{sin t} \
&=lim_{tto0}dfrac{cos t(1-cos t)}{sin t(sqrt{cos^2t+cos t}+sqrt{2cos^2t})} \
&=lim_{tto0}dfrac{cos t}{sqrt{cos^2t+cos t}+sqrt{2cos^2t}}dfrac{2sin^2frac{t}{2}}{frac{t^2}{2}}dfrac{t}{sin t}dfrac{t}{2} \
&=color{blue}{0}
end{align}
Another approach is using substitution $x=cot t$:
begin{align}
lim_{xtoinfty}left(sqrt{x^{4} +x^{2}sqrt{x^{4} +1}}-sqrt{2x^{4}}right)
&=lim_{tto0}dfrac{sqrt{cos^2t+cos t}-sqrt{2cos^2t}}{sin t} \
&=lim_{tto0}dfrac{cos t(1-cos t)}{sin t(sqrt{cos^2t+cos t}+sqrt{2cos^2t})} \
&=lim_{tto0}dfrac{cos t}{sqrt{cos^2t+cos t}+sqrt{2cos^2t}}dfrac{2sin^2frac{t}{2}}{frac{t^2}{2}}dfrac{t}{sin t}dfrac{t}{2} \
&=color{blue}{0}
end{align}
answered Dec 8 at 10:20
Nosrati
26.4k62353
26.4k62353
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
Of course it is :)
– Nosrati
Dec 8 at 11:20
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
|
show 1 more comment
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
Of course it is :)
– Nosrati
Dec 8 at 11:20
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
Could you precise? How is $x=cos t$ with $tto 0$ if $xto infty$?
– user376343
Dec 8 at 10:59
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
@user376343 It's impossible when $xtoinfty$ then $tto0$ with $x=cos t$.
– Nosrati
Dec 8 at 11:03
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
When $t to 0$ then $cos t to 1$ therefore I find you substitution mysterious...
– user376343
Dec 8 at 11:17
Of course it is :)
– Nosrati
Dec 8 at 11:20
Of course it is :)
– Nosrati
Dec 8 at 11:20
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
@user376343, a letter makes a difference here: $cos t$ and $cot t$.
– farruhota
Dec 8 at 11:35
|
show 1 more comment
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030896%2ffind-limit-lim-limits-x-rightarrow-infty-left-sqrtx4-x2-sqrtx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
See math.stackexchange.com/questions/3025375/…
– lab bhattacharjee
Dec 8 at 9:47