How to take an absolute value or modulus of z?












0














let's assume the :



$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?



edit 1:



$(a-jb)(a+jb)=a^2+b^2$



edit 2:



$ abs(e^{(-jc)})=1$



$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$



what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?










share|cite|improve this question
























  • Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
    – Martund
    Dec 8 at 9:23










  • @Crazyformaths yes
    – LenaPark
    Dec 8 at 9:37










  • Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
    – Martund
    Dec 8 at 9:39
















0














let's assume the :



$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?



edit 1:



$(a-jb)(a+jb)=a^2+b^2$



edit 2:



$ abs(e^{(-jc)})=1$



$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$



what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?










share|cite|improve this question
























  • Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
    – Martund
    Dec 8 at 9:23










  • @Crazyformaths yes
    – LenaPark
    Dec 8 at 9:37










  • Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
    – Martund
    Dec 8 at 9:39














0












0








0







let's assume the :



$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?



edit 1:



$(a-jb)(a+jb)=a^2+b^2$



edit 2:



$ abs(e^{(-jc)})=1$



$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$



what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?










share|cite|improve this question















let's assume the :



$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?



edit 1:



$(a-jb)(a+jb)=a^2+b^2$



edit 2:



$ abs(e^{(-jc)})=1$



$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$



what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?







complex-analysis complex-numbers modules






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 8 at 18:45









Shaun

8,507113580




8,507113580










asked Dec 8 at 9:20









LenaPark

83




83












  • Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
    – Martund
    Dec 8 at 9:23










  • @Crazyformaths yes
    – LenaPark
    Dec 8 at 9:37










  • Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
    – Martund
    Dec 8 at 9:39


















  • Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
    – Martund
    Dec 8 at 9:23










  • @Crazyformaths yes
    – LenaPark
    Dec 8 at 9:37










  • Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
    – Martund
    Dec 8 at 9:39
















Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23




Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23












@Crazyformaths yes
– LenaPark
Dec 8 at 9:37




@Crazyformaths yes
– LenaPark
Dec 8 at 9:37












Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39




Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39










2 Answers
2






active

oldest

votes


















1














Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.






share|cite|improve this answer





















  • This is assuming $j^2=-1$.
    – Shaun
    Dec 8 at 9:25



















1














Recall that
$$
left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
$$

If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
$$
left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
$$






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030866%2fhow-to-take-an-absolute-value-or-modulus-of-z%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1














    Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.






    share|cite|improve this answer





















    • This is assuming $j^2=-1$.
      – Shaun
      Dec 8 at 9:25
















    1














    Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.






    share|cite|improve this answer





















    • This is assuming $j^2=-1$.
      – Shaun
      Dec 8 at 9:25














    1












    1








    1






    Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.






    share|cite|improve this answer












    Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 8 at 9:24









    Shaun

    8,507113580




    8,507113580












    • This is assuming $j^2=-1$.
      – Shaun
      Dec 8 at 9:25


















    • This is assuming $j^2=-1$.
      – Shaun
      Dec 8 at 9:25
















    This is assuming $j^2=-1$.
    – Shaun
    Dec 8 at 9:25




    This is assuming $j^2=-1$.
    – Shaun
    Dec 8 at 9:25











    1














    Recall that
    $$
    left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
    $$

    If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
    $$
    left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
    $$






    share|cite|improve this answer


























      1














      Recall that
      $$
      left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
      $$

      If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
      $$
      left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
      $$






      share|cite|improve this answer
























        1












        1








        1






        Recall that
        $$
        left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
        $$

        If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
        $$
        left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
        $$






        share|cite|improve this answer












        Recall that
        $$
        left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
        $$

        If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
        $$
        left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
        $$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 8 at 9:42









        egreg

        177k1484200




        177k1484200






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030866%2fhow-to-take-an-absolute-value-or-modulus-of-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna