How to take an absolute value or modulus of z?
let's assume the :
$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?
edit 1:
$(a-jb)(a+jb)=a^2+b^2$
edit 2:
$ abs(e^{(-jc)})=1$
$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$
what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?
complex-analysis complex-numbers modules
add a comment |
let's assume the :
$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?
edit 1:
$(a-jb)(a+jb)=a^2+b^2$
edit 2:
$ abs(e^{(-jc)})=1$
$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$
what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?
complex-analysis complex-numbers modules
Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23
@Crazyformaths yes
– LenaPark
Dec 8 at 9:37
Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39
add a comment |
let's assume the :
$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?
edit 1:
$(a-jb)(a+jb)=a^2+b^2$
edit 2:
$ abs(e^{(-jc)})=1$
$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$
what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?
complex-analysis complex-numbers modules
let's assume the :
$$z=frac{e^{(-jc)}}{(a+jb)}$$
I would like to take the absolute value of z.
I started with multiplication z with $frac{(a-jb)}{(a-jb)}$ and got:
$$absfrac{e^{(-jc)}}{(a+jb)}=frac{e^{(-jc)}(a-jb)}{(a^2+b^2)}$$
Then:
$$frac{e^{(-jc)}(a-jb)*e^{(jc)}}{(a^2-b^2)e^{(jc)}}=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$$
Should I repeat the calculations or I made something wrong?
edit 1:
$(a-jb)(a+jb)=a^2+b^2$
edit 2:
$ abs(e^{(-jc)})=1$
$ abs(z)=frac{(a-jb)}{(a^2+b^2)e^{(jc)}}$
what should i do with $(a-jb)$? Or will be it $(a^2+b^2)$?
complex-analysis complex-numbers modules
complex-analysis complex-numbers modules
edited Dec 8 at 18:45
Shaun
8,507113580
8,507113580
asked Dec 8 at 9:20
LenaPark
83
83
Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23
@Crazyformaths yes
– LenaPark
Dec 8 at 9:37
Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39
add a comment |
Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23
@Crazyformaths yes
– LenaPark
Dec 8 at 9:37
Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39
Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23
Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23
@Crazyformaths yes
– LenaPark
Dec 8 at 9:37
@Crazyformaths yes
– LenaPark
Dec 8 at 9:37
Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39
Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39
add a comment |
2 Answers
2
active
oldest
votes
Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
add a comment |
Recall that
$$
left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
$$
If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
$$
left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
$$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030866%2fhow-to-take-an-absolute-value-or-modulus-of-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
add a comment |
Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
add a comment |
Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.
Hint: If $w=re^{jtheta}$ for $r,thetainBbb R$, then $|w|=|r|$.
answered Dec 8 at 9:24
Shaun
8,507113580
8,507113580
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
add a comment |
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
This is assuming $j^2=-1$.
– Shaun
Dec 8 at 9:25
add a comment |
Recall that
$$
left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
$$
If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
$$
left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
$$
add a comment |
Recall that
$$
left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
$$
If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
$$
left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
$$
add a comment |
Recall that
$$
left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
$$
If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
$$
left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
$$
Recall that
$$
left|frac{z_1}{z_2}right|=frac{|z_1|}{|z_2|}
$$
If $c$ is real, then $|e^{-jc}|=|cos c+jsin c|=1$. So you have
$$
left|frac{e^{-jc}}{a+jb}right|=frac{1}{|a+jb|}=frac{1}{sqrt{a^2+b^2}}
$$
answered Dec 8 at 9:42
egreg
177k1484200
177k1484200
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030866%2fhow-to-take-an-absolute-value-or-modulus-of-z%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Are you using 'j' as a symbol for iota(i.e. $sqrt{-1}$)?
– Martund
Dec 8 at 9:23
@Crazyformaths yes
– LenaPark
Dec 8 at 9:37
Multiplication with $a-jb$ gives $a^2+b^2$ in the denominator.
– Martund
Dec 8 at 9:39