Prove: $(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $
I'd really like your help proving:
$(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $
Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:
- $Arightarrow(B rightarrow A)$
- $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$
- $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$
- $bar{bar{A}} rightarrow A$
In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.
Any suggestions?
logic propositional-calculus proof-theory hilbert-calculus
add a comment |
I'd really like your help proving:
$(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $
Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:
- $Arightarrow(B rightarrow A)$
- $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$
- $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$
- $bar{bar{A}} rightarrow A$
In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.
Any suggestions?
logic propositional-calculus proof-theory hilbert-calculus
add a comment |
I'd really like your help proving:
$(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $
Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:
- $Arightarrow(B rightarrow A)$
- $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$
- $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$
- $bar{bar{A}} rightarrow A$
In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.
Any suggestions?
logic propositional-calculus proof-theory hilbert-calculus
I'd really like your help proving:
$(Arightarrow B),(Arightarrow C)rightarrow B, mapsto_{HPC} B $
Where $HPC$ is the Hilbert's system proof which contains the following relevant axioms:
- $Arightarrow(B rightarrow A)$
- $(Arightarrow(Brightarrow C)) to ((Arightarrow B)rightarrow(Arightarrow C))$
- $(Arightarrow B)rightarrow ((Arightarrowbar{B})rightarrow bar{A})$
- $bar{bar{A}} rightarrow A$
In addition tried to use these following lemmas: $bar{A} rightarrow (A rightarrow C) $ and $(Arightarrow B)rightarrow (bar{B} rightarrow bar{A})$.
Any suggestions?
logic propositional-calculus proof-theory hilbert-calculus
logic propositional-calculus proof-theory hilbert-calculus
edited Jul 29 at 12:25
Taroccoesbrocco
5,01261839
5,01261839
asked Mar 21 '13 at 17:14
Jozef
2,82132564
2,82132564
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
- $A→B$ (premise)
- $(A→C)→B$ (premise)
- $(A→B)→(neg B→neg A)$ (your second lemma)
- $neg B→ neg A$ (3,1)
- $neg A →(A→C)$ (your first lemma)
- $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)
- $neg B → (neg A →(A→C))$ (6,5)
- $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)
- $((neg B → neg A)→(neg B → (A→C)))$ (8,7)
- $neg B → (A→C)$ (9,4)
- $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)
- $neg B → neg(A→C)$ (11, 2)
- $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)
- $(neg B → neg(A→C))→neg neg B$ (13, 10)
- $neg neg B$ (14, 12)
- $neg neg B → B$ (axiom 4)
- $B$ (16, 15)
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f337065%2fprove-a-rightarrow-b-a-rightarrow-c-rightarrow-b-mapsto-hpc-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
- $A→B$ (premise)
- $(A→C)→B$ (premise)
- $(A→B)→(neg B→neg A)$ (your second lemma)
- $neg B→ neg A$ (3,1)
- $neg A →(A→C)$ (your first lemma)
- $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)
- $neg B → (neg A →(A→C))$ (6,5)
- $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)
- $((neg B → neg A)→(neg B → (A→C)))$ (8,7)
- $neg B → (A→C)$ (9,4)
- $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)
- $neg B → neg(A→C)$ (11, 2)
- $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)
- $(neg B → neg(A→C))→neg neg B$ (13, 10)
- $neg neg B$ (14, 12)
- $neg neg B → B$ (axiom 4)
- $B$ (16, 15)
add a comment |
- $A→B$ (premise)
- $(A→C)→B$ (premise)
- $(A→B)→(neg B→neg A)$ (your second lemma)
- $neg B→ neg A$ (3,1)
- $neg A →(A→C)$ (your first lemma)
- $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)
- $neg B → (neg A →(A→C))$ (6,5)
- $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)
- $((neg B → neg A)→(neg B → (A→C)))$ (8,7)
- $neg B → (A→C)$ (9,4)
- $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)
- $neg B → neg(A→C)$ (11, 2)
- $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)
- $(neg B → neg(A→C))→neg neg B$ (13, 10)
- $neg neg B$ (14, 12)
- $neg neg B → B$ (axiom 4)
- $B$ (16, 15)
add a comment |
- $A→B$ (premise)
- $(A→C)→B$ (premise)
- $(A→B)→(neg B→neg A)$ (your second lemma)
- $neg B→ neg A$ (3,1)
- $neg A →(A→C)$ (your first lemma)
- $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)
- $neg B → (neg A →(A→C))$ (6,5)
- $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)
- $((neg B → neg A)→(neg B → (A→C)))$ (8,7)
- $neg B → (A→C)$ (9,4)
- $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)
- $neg B → neg(A→C)$ (11, 2)
- $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)
- $(neg B → neg(A→C))→neg neg B$ (13, 10)
- $neg neg B$ (14, 12)
- $neg neg B → B$ (axiom 4)
- $B$ (16, 15)
- $A→B$ (premise)
- $(A→C)→B$ (premise)
- $(A→B)→(neg B→neg A)$ (your second lemma)
- $neg B→ neg A$ (3,1)
- $neg A →(A→C)$ (your first lemma)
- $(neg A →(A→C))→(neg B → (neg A →(A→C)))$ (axiom 1)
- $neg B → (neg A →(A→C))$ (6,5)
- $(neg B → (neg A →(A→C))) → ((neg B → neg A)→(neg B → (A→C)))$ (axiom 2)
- $((neg B → neg A)→(neg B → (A→C)))$ (8,7)
- $neg B → (A→C)$ (9,4)
- $((A→C)→B)→(neg B → neg(A→C))$ (your second lemma)
- $neg B → neg(A→C)$ (11, 2)
- $(neg B → (A→C))→((neg B → neg(A→C))→neg neg B)$ (axiom 3)
- $(neg B → neg(A→C))→neg neg B$ (13, 10)
- $neg neg B$ (14, 12)
- $neg neg B → B$ (axiom 4)
- $B$ (16, 15)
answered Mar 23 '13 at 17:04
Cian
411215
411215
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f337065%2fprove-a-rightarrow-b-a-rightarrow-c-rightarrow-b-mapsto-hpc-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown