Proving $(sec^2x+tan^2x)(csc^2x+cot^2x)=1+2sec^2xcsc^2x$ and $frac{cos x}{1-tan x}+frac{sin x}{1-cot x} = sin...











up vote
1
down vote

favorite













Prove the following identities:
$$(sec^2 x + tan^2x)(csc^2 x + cot^2x) = 1+ 2 sec^2x csc^2 x
tag i$$

$$frac{cos x}{1-tan x} + frac{sin x}{1-cot x} = sin x + cos x
tag {ii}$$




For $(mathrm i)$, I initially tried simplifying what was in the 2 brackets but ended up getting 1 + 1.
I then tried just multiplying out the brackets and got as far as $$1+ sec^2x + frac{2}{cos^2x sin^2x}$$










share|cite|improve this question
























  • Please see math.meta.stackexchange.com/questions/5020
    – Lord Shark the Unknown
    Dec 5 at 20:34






  • 1




    I've retyped your equations using mathJax. Notice you can further edit your question, as some parts of the equations were not clear, please do so if something is not as you originally intended.
    – Mefitico
    Dec 5 at 20:34










  • Welcome to MathSE. Please edit the question to show your work. That helps us identify any errors you may have made. This tutorial explains how to typeset mathematics on this site. You should not have the $sec^2x$ term in your answer to the first question.
    – N. F. Taussig
    Dec 5 at 21:05

















up vote
1
down vote

favorite













Prove the following identities:
$$(sec^2 x + tan^2x)(csc^2 x + cot^2x) = 1+ 2 sec^2x csc^2 x
tag i$$

$$frac{cos x}{1-tan x} + frac{sin x}{1-cot x} = sin x + cos x
tag {ii}$$




For $(mathrm i)$, I initially tried simplifying what was in the 2 brackets but ended up getting 1 + 1.
I then tried just multiplying out the brackets and got as far as $$1+ sec^2x + frac{2}{cos^2x sin^2x}$$










share|cite|improve this question
























  • Please see math.meta.stackexchange.com/questions/5020
    – Lord Shark the Unknown
    Dec 5 at 20:34






  • 1




    I've retyped your equations using mathJax. Notice you can further edit your question, as some parts of the equations were not clear, please do so if something is not as you originally intended.
    – Mefitico
    Dec 5 at 20:34










  • Welcome to MathSE. Please edit the question to show your work. That helps us identify any errors you may have made. This tutorial explains how to typeset mathematics on this site. You should not have the $sec^2x$ term in your answer to the first question.
    – N. F. Taussig
    Dec 5 at 21:05















up vote
1
down vote

favorite









up vote
1
down vote

favorite












Prove the following identities:
$$(sec^2 x + tan^2x)(csc^2 x + cot^2x) = 1+ 2 sec^2x csc^2 x
tag i$$

$$frac{cos x}{1-tan x} + frac{sin x}{1-cot x} = sin x + cos x
tag {ii}$$




For $(mathrm i)$, I initially tried simplifying what was in the 2 brackets but ended up getting 1 + 1.
I then tried just multiplying out the brackets and got as far as $$1+ sec^2x + frac{2}{cos^2x sin^2x}$$










share|cite|improve this question
















Prove the following identities:
$$(sec^2 x + tan^2x)(csc^2 x + cot^2x) = 1+ 2 sec^2x csc^2 x
tag i$$

$$frac{cos x}{1-tan x} + frac{sin x}{1-cot x} = sin x + cos x
tag {ii}$$




For $(mathrm i)$, I initially tried simplifying what was in the 2 brackets but ended up getting 1 + 1.
I then tried just multiplying out the brackets and got as far as $$1+ sec^2x + frac{2}{cos^2x sin^2x}$$







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 5 at 23:51









Lorenzo B.

1,8302520




1,8302520










asked Dec 5 at 20:27









S. Bejta

61




61












  • Please see math.meta.stackexchange.com/questions/5020
    – Lord Shark the Unknown
    Dec 5 at 20:34






  • 1




    I've retyped your equations using mathJax. Notice you can further edit your question, as some parts of the equations were not clear, please do so if something is not as you originally intended.
    – Mefitico
    Dec 5 at 20:34










  • Welcome to MathSE. Please edit the question to show your work. That helps us identify any errors you may have made. This tutorial explains how to typeset mathematics on this site. You should not have the $sec^2x$ term in your answer to the first question.
    – N. F. Taussig
    Dec 5 at 21:05




















  • Please see math.meta.stackexchange.com/questions/5020
    – Lord Shark the Unknown
    Dec 5 at 20:34






  • 1




    I've retyped your equations using mathJax. Notice you can further edit your question, as some parts of the equations were not clear, please do so if something is not as you originally intended.
    – Mefitico
    Dec 5 at 20:34










  • Welcome to MathSE. Please edit the question to show your work. That helps us identify any errors you may have made. This tutorial explains how to typeset mathematics on this site. You should not have the $sec^2x$ term in your answer to the first question.
    – N. F. Taussig
    Dec 5 at 21:05


















Please see math.meta.stackexchange.com/questions/5020
– Lord Shark the Unknown
Dec 5 at 20:34




Please see math.meta.stackexchange.com/questions/5020
– Lord Shark the Unknown
Dec 5 at 20:34




1




1




I've retyped your equations using mathJax. Notice you can further edit your question, as some parts of the equations were not clear, please do so if something is not as you originally intended.
– Mefitico
Dec 5 at 20:34




I've retyped your equations using mathJax. Notice you can further edit your question, as some parts of the equations were not clear, please do so if something is not as you originally intended.
– Mefitico
Dec 5 at 20:34












Welcome to MathSE. Please edit the question to show your work. That helps us identify any errors you may have made. This tutorial explains how to typeset mathematics on this site. You should not have the $sec^2x$ term in your answer to the first question.
– N. F. Taussig
Dec 5 at 21:05






Welcome to MathSE. Please edit the question to show your work. That helps us identify any errors you may have made. This tutorial explains how to typeset mathematics on this site. You should not have the $sec^2x$ term in your answer to the first question.
– N. F. Taussig
Dec 5 at 21:05












3 Answers
3






active

oldest

votes

















up vote
2
down vote













(i)
$$(sec^2x + tan^2x)(csc^2x + cot^2x)$$
=>
$$(sec^2xcsc^2x + tan^2xcsc^2x + sec^2xcot^2x + tan^2xcot^2x)$$
=>
$$(sec^2xcsc^2x+ frac{sin^2x}{cos^2xsin^2x} + frac{cos^2x}{cos^2xsin^2x} + 1)$$
=>
$$(sec^2xcsc^2x+ frac{1}{cos^2x} + frac{1}{sin^2x} + 1)$$
=>
$$(sec^2xcsc^2x+ frac{sin^2x + cos^2x}{cos^2xsin^2x} + 1)$$
=>
$$(sec^2xcsc^2x+ frac{1}{cos^2xsin^2x} + 1)$$
=>
$$(sec^2xcsc^2x+ sec^2xcsc^2x + 1)$$
=>
$$(1 + 2sec^2xcsc^2x)$$



ii) $$frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x}$$
=>
$$frac{cos x(1 - cot x) + sin x(1 - tan x)}{(1 - tan x)(1 - cot x)}$$
=>
$$frac{frac{cos^2x sin x - cos xcos^2x + sin^2 xcos x - sin xsin^2x}{sin x cos x}}{(1 - tan x)(1 - cot x)}$$
=>
$$frac{cos^2 x(sin x - cos x) + sin^2 x(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
=>
$$frac{(sin^2 x - cos^2 x)(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
=>
$$frac{(sin^2 x - cos^2x)(cos x - sin x)}{(cos x - sin x)(sin x - cos x)}$$
=>
$$frac{(sin^2 x - cos^2 x)}{(sin x - cos x)}$$
=>
$$frac{(sin x + cos x)(sin x - cos x)}{(sin x - cos x)}$$
=>
$$sin x + cos x$$






share|cite|improve this answer























  • That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
    – Toby Bartels
    Dec 5 at 21:34












  • Thanks! fixed the issues...
    – Gopal Anantharaman
    Dec 5 at 21:56










  • Well done I lost in that! I'll take a look to your work, Bye
    – gimusi
    Dec 5 at 22:02










  • It looks good now.
    – Toby Bartels
    Dec 6 at 22:00


















up vote
1
down vote













$$(sec^2x+tan^2x)(csc^2x+cot^2x)$$



$$=(2sec^2x-1)(2csc^2x-1)$$



$$=4sec^2xcsc^2x-2(sec^2x+csc^2x)+1$$



Now use $sec^2x+csc^2x=cdots=sec^2xcsc^2x$



The second one has been solved by Taussig






share|cite|improve this answer





















  • Your method for this proof is definitely an improvement over mine.
    – N. F. Taussig
    Dec 8 at 14:53


















up vote
0
down vote













(i)
begin{align*}
(sec^2x + tan^2x)(csc^2x + cot^2x) & = (1 + tan^2x + tan^2x)(1 + cot^2x + cot^2x)\
& = (1 + 2tan^2x)(1 + 2cot^2x)\
& = 1 + 2cot^2x + 2tan^2x + 4\
& = 5 + 2(csc^2x - 1) + 2(sec^2x - 1)\
& = 5 + 2csc^2x - 2 + 2sec^2x - 2\
& = 1 + 2csc^2x + 2sec^2x\
& = 1 + 2left(frac{1}{sin^2x} + frac{1}{cos^2x}right)\
& = 1 + 2left(frac{cos^2x + sin^2x}{sin^2xcos^2x}right)\
& = 1 + frac{2}{cos^2xsin^2x}\
& = 1 + 2sec^2xcsc^2x
end{align*}



(ii)
begin{align*}
frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x} & = frac{cos x}{1 - tan x} cdot frac{cos x}{cos x} + frac{sin x}{1 - cot x} cdot frac{sin x}{sin x}\
& = frac{cos^2x}{cos x - sin x} + frac{sin^2x}{sin x - cos x}\
& = frac{cos^2x}{cos x - sin x} - frac{sin^2x}{cos x - sin x}\
& = frac{cos^2x - sin^2x}{cos x - sin x}\
& = frac{(cos x + sin x)(cos x - sin x)}{cos x - sin x}\
& = cos x + sin x
end{align*}






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027602%2fproving-sec2x-tan2x-csc2x-cot2x-12-sec2x-csc2x-and-frac-cos-x%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote













    (i)
    $$(sec^2x + tan^2x)(csc^2x + cot^2x)$$
    =>
    $$(sec^2xcsc^2x + tan^2xcsc^2x + sec^2xcot^2x + tan^2xcot^2x)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x}{cos^2xsin^2x} + frac{cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2x} + frac{1}{sin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x + cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ sec^2xcsc^2x + 1)$$
    =>
    $$(1 + 2sec^2xcsc^2x)$$



    ii) $$frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x}$$
    =>
    $$frac{cos x(1 - cot x) + sin x(1 - tan x)}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{frac{cos^2x sin x - cos xcos^2x + sin^2 xcos x - sin xsin^2x}{sin x cos x}}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{cos^2 x(sin x - cos x) + sin^2 x(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2x)(cos x - sin x)}{(cos x - sin x)(sin x - cos x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)}{(sin x - cos x)}$$
    =>
    $$frac{(sin x + cos x)(sin x - cos x)}{(sin x - cos x)}$$
    =>
    $$sin x + cos x$$






    share|cite|improve this answer























    • That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
      – Toby Bartels
      Dec 5 at 21:34












    • Thanks! fixed the issues...
      – Gopal Anantharaman
      Dec 5 at 21:56










    • Well done I lost in that! I'll take a look to your work, Bye
      – gimusi
      Dec 5 at 22:02










    • It looks good now.
      – Toby Bartels
      Dec 6 at 22:00















    up vote
    2
    down vote













    (i)
    $$(sec^2x + tan^2x)(csc^2x + cot^2x)$$
    =>
    $$(sec^2xcsc^2x + tan^2xcsc^2x + sec^2xcot^2x + tan^2xcot^2x)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x}{cos^2xsin^2x} + frac{cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2x} + frac{1}{sin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x + cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ sec^2xcsc^2x + 1)$$
    =>
    $$(1 + 2sec^2xcsc^2x)$$



    ii) $$frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x}$$
    =>
    $$frac{cos x(1 - cot x) + sin x(1 - tan x)}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{frac{cos^2x sin x - cos xcos^2x + sin^2 xcos x - sin xsin^2x}{sin x cos x}}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{cos^2 x(sin x - cos x) + sin^2 x(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2x)(cos x - sin x)}{(cos x - sin x)(sin x - cos x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)}{(sin x - cos x)}$$
    =>
    $$frac{(sin x + cos x)(sin x - cos x)}{(sin x - cos x)}$$
    =>
    $$sin x + cos x$$






    share|cite|improve this answer























    • That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
      – Toby Bartels
      Dec 5 at 21:34












    • Thanks! fixed the issues...
      – Gopal Anantharaman
      Dec 5 at 21:56










    • Well done I lost in that! I'll take a look to your work, Bye
      – gimusi
      Dec 5 at 22:02










    • It looks good now.
      – Toby Bartels
      Dec 6 at 22:00













    up vote
    2
    down vote










    up vote
    2
    down vote









    (i)
    $$(sec^2x + tan^2x)(csc^2x + cot^2x)$$
    =>
    $$(sec^2xcsc^2x + tan^2xcsc^2x + sec^2xcot^2x + tan^2xcot^2x)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x}{cos^2xsin^2x} + frac{cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2x} + frac{1}{sin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x + cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ sec^2xcsc^2x + 1)$$
    =>
    $$(1 + 2sec^2xcsc^2x)$$



    ii) $$frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x}$$
    =>
    $$frac{cos x(1 - cot x) + sin x(1 - tan x)}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{frac{cos^2x sin x - cos xcos^2x + sin^2 xcos x - sin xsin^2x}{sin x cos x}}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{cos^2 x(sin x - cos x) + sin^2 x(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2x)(cos x - sin x)}{(cos x - sin x)(sin x - cos x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)}{(sin x - cos x)}$$
    =>
    $$frac{(sin x + cos x)(sin x - cos x)}{(sin x - cos x)}$$
    =>
    $$sin x + cos x$$






    share|cite|improve this answer














    (i)
    $$(sec^2x + tan^2x)(csc^2x + cot^2x)$$
    =>
    $$(sec^2xcsc^2x + tan^2xcsc^2x + sec^2xcot^2x + tan^2xcot^2x)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x}{cos^2xsin^2x} + frac{cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2x} + frac{1}{sin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{sin^2x + cos^2x}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ frac{1}{cos^2xsin^2x} + 1)$$
    =>
    $$(sec^2xcsc^2x+ sec^2xcsc^2x + 1)$$
    =>
    $$(1 + 2sec^2xcsc^2x)$$



    ii) $$frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x}$$
    =>
    $$frac{cos x(1 - cot x) + sin x(1 - tan x)}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{frac{cos^2x sin x - cos xcos^2x + sin^2 xcos x - sin xsin^2x}{sin x cos x}}{(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{cos^2 x(sin x - cos x) + sin^2 x(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)(cos x - sin x)}{cos xsin x(1 - tan x)(1 - cot x)}$$
    =>
    $$frac{(sin^2 x - cos^2x)(cos x - sin x)}{(cos x - sin x)(sin x - cos x)}$$
    =>
    $$frac{(sin^2 x - cos^2 x)}{(sin x - cos x)}$$
    =>
    $$frac{(sin x + cos x)(sin x - cos x)}{(sin x - cos x)}$$
    =>
    $$sin x + cos x$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited Dec 5 at 21:55

























    answered Dec 5 at 21:21









    Gopal Anantharaman

    626




    626












    • That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
      – Toby Bartels
      Dec 5 at 21:34












    • Thanks! fixed the issues...
      – Gopal Anantharaman
      Dec 5 at 21:56










    • Well done I lost in that! I'll take a look to your work, Bye
      – gimusi
      Dec 5 at 22:02










    • It looks good now.
      – Toby Bartels
      Dec 6 at 22:00


















    • That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
      – Toby Bartels
      Dec 5 at 21:34












    • Thanks! fixed the issues...
      – Gopal Anantharaman
      Dec 5 at 21:56










    • Well done I lost in that! I'll take a look to your work, Bye
      – gimusi
      Dec 5 at 22:02










    • It looks good now.
      – Toby Bartels
      Dec 6 at 22:00
















    That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
    – Toby Bartels
    Dec 5 at 21:34






    That's not the desired answer for (ii). Your only mistake that I can see is in going to the line with a fraction inside a fraction; in the numerator there, you don't have a common denominator. That is, the numerator should be $frac{cos xsin x-cos^2x}{sin x}+frac{sin xcos x-sin^2x}{cos x}$, rather than $frac{cos xsin x-cos^2x}{sin xcos x}+frac{sin xcos x-sin^2x}{sin xcos x}=frac{cos xsin x-cos^2x+sin xcos x-sin^2x}{sin xcos x}$ as you have it.
    – Toby Bartels
    Dec 5 at 21:34














    Thanks! fixed the issues...
    – Gopal Anantharaman
    Dec 5 at 21:56




    Thanks! fixed the issues...
    – Gopal Anantharaman
    Dec 5 at 21:56












    Well done I lost in that! I'll take a look to your work, Bye
    – gimusi
    Dec 5 at 22:02




    Well done I lost in that! I'll take a look to your work, Bye
    – gimusi
    Dec 5 at 22:02












    It looks good now.
    – Toby Bartels
    Dec 6 at 22:00




    It looks good now.
    – Toby Bartels
    Dec 6 at 22:00










    up vote
    1
    down vote













    $$(sec^2x+tan^2x)(csc^2x+cot^2x)$$



    $$=(2sec^2x-1)(2csc^2x-1)$$



    $$=4sec^2xcsc^2x-2(sec^2x+csc^2x)+1$$



    Now use $sec^2x+csc^2x=cdots=sec^2xcsc^2x$



    The second one has been solved by Taussig






    share|cite|improve this answer





















    • Your method for this proof is definitely an improvement over mine.
      – N. F. Taussig
      Dec 8 at 14:53















    up vote
    1
    down vote













    $$(sec^2x+tan^2x)(csc^2x+cot^2x)$$



    $$=(2sec^2x-1)(2csc^2x-1)$$



    $$=4sec^2xcsc^2x-2(sec^2x+csc^2x)+1$$



    Now use $sec^2x+csc^2x=cdots=sec^2xcsc^2x$



    The second one has been solved by Taussig






    share|cite|improve this answer





















    • Your method for this proof is definitely an improvement over mine.
      – N. F. Taussig
      Dec 8 at 14:53













    up vote
    1
    down vote










    up vote
    1
    down vote









    $$(sec^2x+tan^2x)(csc^2x+cot^2x)$$



    $$=(2sec^2x-1)(2csc^2x-1)$$



    $$=4sec^2xcsc^2x-2(sec^2x+csc^2x)+1$$



    Now use $sec^2x+csc^2x=cdots=sec^2xcsc^2x$



    The second one has been solved by Taussig






    share|cite|improve this answer












    $$(sec^2x+tan^2x)(csc^2x+cot^2x)$$



    $$=(2sec^2x-1)(2csc^2x-1)$$



    $$=4sec^2xcsc^2x-2(sec^2x+csc^2x)+1$$



    Now use $sec^2x+csc^2x=cdots=sec^2xcsc^2x$



    The second one has been solved by Taussig







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered Dec 6 at 7:41









    lab bhattacharjee

    222k15155273




    222k15155273












    • Your method for this proof is definitely an improvement over mine.
      – N. F. Taussig
      Dec 8 at 14:53


















    • Your method for this proof is definitely an improvement over mine.
      – N. F. Taussig
      Dec 8 at 14:53
















    Your method for this proof is definitely an improvement over mine.
    – N. F. Taussig
    Dec 8 at 14:53




    Your method for this proof is definitely an improvement over mine.
    – N. F. Taussig
    Dec 8 at 14:53










    up vote
    0
    down vote













    (i)
    begin{align*}
    (sec^2x + tan^2x)(csc^2x + cot^2x) & = (1 + tan^2x + tan^2x)(1 + cot^2x + cot^2x)\
    & = (1 + 2tan^2x)(1 + 2cot^2x)\
    & = 1 + 2cot^2x + 2tan^2x + 4\
    & = 5 + 2(csc^2x - 1) + 2(sec^2x - 1)\
    & = 5 + 2csc^2x - 2 + 2sec^2x - 2\
    & = 1 + 2csc^2x + 2sec^2x\
    & = 1 + 2left(frac{1}{sin^2x} + frac{1}{cos^2x}right)\
    & = 1 + 2left(frac{cos^2x + sin^2x}{sin^2xcos^2x}right)\
    & = 1 + frac{2}{cos^2xsin^2x}\
    & = 1 + 2sec^2xcsc^2x
    end{align*}



    (ii)
    begin{align*}
    frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x} & = frac{cos x}{1 - tan x} cdot frac{cos x}{cos x} + frac{sin x}{1 - cot x} cdot frac{sin x}{sin x}\
    & = frac{cos^2x}{cos x - sin x} + frac{sin^2x}{sin x - cos x}\
    & = frac{cos^2x}{cos x - sin x} - frac{sin^2x}{cos x - sin x}\
    & = frac{cos^2x - sin^2x}{cos x - sin x}\
    & = frac{(cos x + sin x)(cos x - sin x)}{cos x - sin x}\
    & = cos x + sin x
    end{align*}






    share|cite|improve this answer

























      up vote
      0
      down vote













      (i)
      begin{align*}
      (sec^2x + tan^2x)(csc^2x + cot^2x) & = (1 + tan^2x + tan^2x)(1 + cot^2x + cot^2x)\
      & = (1 + 2tan^2x)(1 + 2cot^2x)\
      & = 1 + 2cot^2x + 2tan^2x + 4\
      & = 5 + 2(csc^2x - 1) + 2(sec^2x - 1)\
      & = 5 + 2csc^2x - 2 + 2sec^2x - 2\
      & = 1 + 2csc^2x + 2sec^2x\
      & = 1 + 2left(frac{1}{sin^2x} + frac{1}{cos^2x}right)\
      & = 1 + 2left(frac{cos^2x + sin^2x}{sin^2xcos^2x}right)\
      & = 1 + frac{2}{cos^2xsin^2x}\
      & = 1 + 2sec^2xcsc^2x
      end{align*}



      (ii)
      begin{align*}
      frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x} & = frac{cos x}{1 - tan x} cdot frac{cos x}{cos x} + frac{sin x}{1 - cot x} cdot frac{sin x}{sin x}\
      & = frac{cos^2x}{cos x - sin x} + frac{sin^2x}{sin x - cos x}\
      & = frac{cos^2x}{cos x - sin x} - frac{sin^2x}{cos x - sin x}\
      & = frac{cos^2x - sin^2x}{cos x - sin x}\
      & = frac{(cos x + sin x)(cos x - sin x)}{cos x - sin x}\
      & = cos x + sin x
      end{align*}






      share|cite|improve this answer























        up vote
        0
        down vote










        up vote
        0
        down vote









        (i)
        begin{align*}
        (sec^2x + tan^2x)(csc^2x + cot^2x) & = (1 + tan^2x + tan^2x)(1 + cot^2x + cot^2x)\
        & = (1 + 2tan^2x)(1 + 2cot^2x)\
        & = 1 + 2cot^2x + 2tan^2x + 4\
        & = 5 + 2(csc^2x - 1) + 2(sec^2x - 1)\
        & = 5 + 2csc^2x - 2 + 2sec^2x - 2\
        & = 1 + 2csc^2x + 2sec^2x\
        & = 1 + 2left(frac{1}{sin^2x} + frac{1}{cos^2x}right)\
        & = 1 + 2left(frac{cos^2x + sin^2x}{sin^2xcos^2x}right)\
        & = 1 + frac{2}{cos^2xsin^2x}\
        & = 1 + 2sec^2xcsc^2x
        end{align*}



        (ii)
        begin{align*}
        frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x} & = frac{cos x}{1 - tan x} cdot frac{cos x}{cos x} + frac{sin x}{1 - cot x} cdot frac{sin x}{sin x}\
        & = frac{cos^2x}{cos x - sin x} + frac{sin^2x}{sin x - cos x}\
        & = frac{cos^2x}{cos x - sin x} - frac{sin^2x}{cos x - sin x}\
        & = frac{cos^2x - sin^2x}{cos x - sin x}\
        & = frac{(cos x + sin x)(cos x - sin x)}{cos x - sin x}\
        & = cos x + sin x
        end{align*}






        share|cite|improve this answer












        (i)
        begin{align*}
        (sec^2x + tan^2x)(csc^2x + cot^2x) & = (1 + tan^2x + tan^2x)(1 + cot^2x + cot^2x)\
        & = (1 + 2tan^2x)(1 + 2cot^2x)\
        & = 1 + 2cot^2x + 2tan^2x + 4\
        & = 5 + 2(csc^2x - 1) + 2(sec^2x - 1)\
        & = 5 + 2csc^2x - 2 + 2sec^2x - 2\
        & = 1 + 2csc^2x + 2sec^2x\
        & = 1 + 2left(frac{1}{sin^2x} + frac{1}{cos^2x}right)\
        & = 1 + 2left(frac{cos^2x + sin^2x}{sin^2xcos^2x}right)\
        & = 1 + frac{2}{cos^2xsin^2x}\
        & = 1 + 2sec^2xcsc^2x
        end{align*}



        (ii)
        begin{align*}
        frac{cos x}{1 - tan x} + frac{sin x}{1 - cot x} & = frac{cos x}{1 - tan x} cdot frac{cos x}{cos x} + frac{sin x}{1 - cot x} cdot frac{sin x}{sin x}\
        & = frac{cos^2x}{cos x - sin x} + frac{sin^2x}{sin x - cos x}\
        & = frac{cos^2x}{cos x - sin x} - frac{sin^2x}{cos x - sin x}\
        & = frac{cos^2x - sin^2x}{cos x - sin x}\
        & = frac{(cos x + sin x)(cos x - sin x)}{cos x - sin x}\
        & = cos x + sin x
        end{align*}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 5 at 22:25









        N. F. Taussig

        43.4k93355




        43.4k93355






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027602%2fproving-sec2x-tan2x-csc2x-cot2x-12-sec2x-csc2x-and-frac-cos-x%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna