Solving Trignometric integral with the aid of residues.











up vote
1
down vote

favorite












If $alpha, beta, gamma$ are real numbers such that $alpha^2> beta^2+gamma^2$ show that $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = frac{2 pi}{sqrt{alpha^2-beta^2-gamma^2}}$$



My attempt: change the variable $z = e^{itheta}$, i.e. $cos theta = frac{z+z^{-1}}{2}, sin theta = -ifrac{z-z^{-1}}{2}$ in the given integral to obtain $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = 2int_{C} frac{-iz^{-1} times z, dz}{2alpha z+beta(z^2+1)-igamma(z^2-1)} = 2int_{C} frac{-i, dz}{z^2(beta-igamma)+2alpha z+beta+i gamma} $$where $C$ is unit circle. Further, from above integral we get $$= frac{-2i}{beta-igamma}int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} $$ $$= -iota frac{1}{sqrt{alpha^2-beta^2-gamma^2}}bigg[ int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) }- int_{C} frac{dz}{ bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} bigg]$$
How to proceed forward? Is my attempt correct?










share|cite|improve this question




























    up vote
    1
    down vote

    favorite












    If $alpha, beta, gamma$ are real numbers such that $alpha^2> beta^2+gamma^2$ show that $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = frac{2 pi}{sqrt{alpha^2-beta^2-gamma^2}}$$



    My attempt: change the variable $z = e^{itheta}$, i.e. $cos theta = frac{z+z^{-1}}{2}, sin theta = -ifrac{z-z^{-1}}{2}$ in the given integral to obtain $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = 2int_{C} frac{-iz^{-1} times z, dz}{2alpha z+beta(z^2+1)-igamma(z^2-1)} = 2int_{C} frac{-i, dz}{z^2(beta-igamma)+2alpha z+beta+i gamma} $$where $C$ is unit circle. Further, from above integral we get $$= frac{-2i}{beta-igamma}int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} $$ $$= -iota frac{1}{sqrt{alpha^2-beta^2-gamma^2}}bigg[ int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) }- int_{C} frac{dz}{ bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} bigg]$$
    How to proceed forward? Is my attempt correct?










    share|cite|improve this question


























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite











      If $alpha, beta, gamma$ are real numbers such that $alpha^2> beta^2+gamma^2$ show that $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = frac{2 pi}{sqrt{alpha^2-beta^2-gamma^2}}$$



      My attempt: change the variable $z = e^{itheta}$, i.e. $cos theta = frac{z+z^{-1}}{2}, sin theta = -ifrac{z-z^{-1}}{2}$ in the given integral to obtain $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = 2int_{C} frac{-iz^{-1} times z, dz}{2alpha z+beta(z^2+1)-igamma(z^2-1)} = 2int_{C} frac{-i, dz}{z^2(beta-igamma)+2alpha z+beta+i gamma} $$where $C$ is unit circle. Further, from above integral we get $$= frac{-2i}{beta-igamma}int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} $$ $$= -iota frac{1}{sqrt{alpha^2-beta^2-gamma^2}}bigg[ int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) }- int_{C} frac{dz}{ bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} bigg]$$
      How to proceed forward? Is my attempt correct?










      share|cite|improve this question















      If $alpha, beta, gamma$ are real numbers such that $alpha^2> beta^2+gamma^2$ show that $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = frac{2 pi}{sqrt{alpha^2-beta^2-gamma^2}}$$



      My attempt: change the variable $z = e^{itheta}$, i.e. $cos theta = frac{z+z^{-1}}{2}, sin theta = -ifrac{z-z^{-1}}{2}$ in the given integral to obtain $$int_0^{2pi}frac{dtheta}{alpha+beta cos theta +gamma sin theta} = 2int_{C} frac{-iz^{-1} times z, dz}{2alpha z+beta(z^2+1)-igamma(z^2-1)} = 2int_{C} frac{-i, dz}{z^2(beta-igamma)+2alpha z+beta+i gamma} $$where $C$ is unit circle. Further, from above integral we get $$= frac{-2i}{beta-igamma}int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} $$ $$= -iota frac{1}{sqrt{alpha^2-beta^2-gamma^2}}bigg[ int_{C} frac{dz}{bigg(z+frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg) }- int_{C} frac{dz}{ bigg(z+frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}bigg)} bigg]$$
      How to proceed forward? Is my attempt correct?







      complex-analysis residue-calculus singularity






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      Masacroso

      12.3k41746




      12.3k41746










      asked yesterday









      Mittal G

      1,182515




      1,182515






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          HINT: let the following contour integrals defined in the boundary of the unit disk in the complex plane (traveled in counter clock-wise direction):



          $$oint frac{dz}{(z-a)(z-b)}=ointfrac{A}{z-a}, dz+ointfrac{B}{z-b}, dz$$



          for some constants $A,BinBbb C$. Now use the Cauchy integral formula.






          share|cite|improve this answer























          • How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
            – Mittal G
            yesterday






          • 1




            @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
            – Masacroso
            yesterday








          • 2




            $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
            – Doug M
            yesterday








          • 1




            @Doug M: Product is not one.
            – Mittal G
            yesterday










          • @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
            – Masacroso
            yesterday













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020185%2fsolving-trignometric-integral-with-the-aid-of-residues%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          HINT: let the following contour integrals defined in the boundary of the unit disk in the complex plane (traveled in counter clock-wise direction):



          $$oint frac{dz}{(z-a)(z-b)}=ointfrac{A}{z-a}, dz+ointfrac{B}{z-b}, dz$$



          for some constants $A,BinBbb C$. Now use the Cauchy integral formula.






          share|cite|improve this answer























          • How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
            – Mittal G
            yesterday






          • 1




            @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
            – Masacroso
            yesterday








          • 2




            $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
            – Doug M
            yesterday








          • 1




            @Doug M: Product is not one.
            – Mittal G
            yesterday










          • @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
            – Masacroso
            yesterday

















          up vote
          1
          down vote



          accepted










          HINT: let the following contour integrals defined in the boundary of the unit disk in the complex plane (traveled in counter clock-wise direction):



          $$oint frac{dz}{(z-a)(z-b)}=ointfrac{A}{z-a}, dz+ointfrac{B}{z-b}, dz$$



          for some constants $A,BinBbb C$. Now use the Cauchy integral formula.






          share|cite|improve this answer























          • How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
            – Mittal G
            yesterday






          • 1




            @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
            – Masacroso
            yesterday








          • 2




            $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
            – Doug M
            yesterday








          • 1




            @Doug M: Product is not one.
            – Mittal G
            yesterday










          • @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
            – Masacroso
            yesterday















          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          HINT: let the following contour integrals defined in the boundary of the unit disk in the complex plane (traveled in counter clock-wise direction):



          $$oint frac{dz}{(z-a)(z-b)}=ointfrac{A}{z-a}, dz+ointfrac{B}{z-b}, dz$$



          for some constants $A,BinBbb C$. Now use the Cauchy integral formula.






          share|cite|improve this answer














          HINT: let the following contour integrals defined in the boundary of the unit disk in the complex plane (traveled in counter clock-wise direction):



          $$oint frac{dz}{(z-a)(z-b)}=ointfrac{A}{z-a}, dz+ointfrac{B}{z-b}, dz$$



          for some constants $A,BinBbb C$. Now use the Cauchy integral formula.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          Masacroso

          12.3k41746




          12.3k41746












          • How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
            – Mittal G
            yesterday






          • 1




            @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
            – Masacroso
            yesterday








          • 2




            $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
            – Doug M
            yesterday








          • 1




            @Doug M: Product is not one.
            – Mittal G
            yesterday










          • @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
            – Masacroso
            yesterday




















          • How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
            – Mittal G
            yesterday






          • 1




            @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
            – Masacroso
            yesterday








          • 2




            $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
            – Doug M
            yesterday








          • 1




            @Doug M: Product is not one.
            – Mittal G
            yesterday










          • @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
            – Masacroso
            yesterday


















          How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
          – Mittal G
          yesterday




          How to look for the modulus of zeros of denominator and decide whether they are in unit circle or not?
          – Mittal G
          yesterday




          1




          1




          @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
          – Masacroso
          yesterday






          @MittalG you need to show if $$left|frac{alphapmsqrt{alpha^2-beta^2-gamma^2}}{beta-igamma}right|^2=frac{(alphapmsqrt{alpha^2-beta^2-gamma^2})^2}{beta^2+gamma^2}<1^2$$ holds for some of the roots, then apply Cauchy integral formula
          – Masacroso
          yesterday






          2




          2




          $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
          – Doug M
          yesterday






          $(frac{alpha-sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma})(frac{alpha+sqrt{alpha^2-beta^2-gamma^2)}}{beta-igamma}) = 1$ One of them is inside $|z|= 1$ and one is outside.
          – Doug M
          yesterday






          1




          1




          @Doug M: Product is not one.
          – Mittal G
          yesterday




          @Doug M: Product is not one.
          – Mittal G
          yesterday












          @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
          – Masacroso
          yesterday






          @MittalG you are right, the product is not 1, however the absolute value of the product is 1, hence if the absolute value of one of the roots is less than 1 then necessarily the absolute value of the other root is bigger than 1
          – Masacroso
          yesterday




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020185%2fsolving-trignometric-integral-with-the-aid-of-residues%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna