Proof of a technical fact in the book of Schapire and Freund on boosting











up vote
5
down vote

favorite
2












I am currently looking at Exercise 10.3, Chapter 10 of the book on Boosting by Schapire and Freund. More precisely, in the middle of the exercise they propose to use, without proof, the technical fact summarized below. Obviously, since it can be used without proof, I am now curious to know how to prove it!





To summarize the problem, let $mathcal{H}$ bet a set of functions $h : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. Define $text{co}(mathcal{H})$ as
begin{align*}
text{co}(mathcal{H}) = leftlbrace f : x,bar{y} mapsto sum_{t=1}^T a_t h_t(x,bar{y}) left| a_1,ldots,a_T geq 0; sum_{t=1}^Ta_t = 1; h_1,ldots h_T in mathcal{H}; Tgeq 1 right. rightrbracetext{.}
end{align*}

Notice that $f : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. For $f in text{co}left(mathcal{H}right)$, $eta > 0$, $bar{K} = |mathcal{bar{Y}}|$, and $(x,y) in mathcal{X} times mathcal{Y}$, let
begin{align*}
nu_{f,eta}(x,y) = - frac{1}{eta} lnleft(frac{1}{bar{K}} sum_{bar{y} in mathcal{bar{Y}}} expBig(-eta Omega(y,bar{y}) f(x,bar{y})Big)right)
end{align*}

where $Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$ and $-1$ otherwise. $Omega(y)$ associates each element from $mathcal{Y}$ to a subset of $mathcal{bar{Y}}$. Notice that $nu_{f,eta} : mathcal{X} times mathcal{Y} rightarrow [-1,1]$.



The technical fact is as follows. Let $1 geq theta > 0$ and define the grid:
begin{align*}
varepsilon_theta = leftlbrace frac{4lnbar{K}}{itheta} : i = 1, ldots, leftlceil frac{8lnbar{K}}{theta^2} rightrceil rightrbracetext{.}
end{align*}

For any $eta > 0$, let $hat{eta}$ be the closest value in $varepsilon_theta$ to $eta$. Then for all $f in text{co}(mathcal{H})$ and for all $(x,y) in mathcal{X} times mathcal{Y}$,
begin{align*}
left| nu_{f,eta}(x,y) - nu_{f,hat{eta}}(x,y) right| leq frac{theta}{4}text{.}
end{align*}





So far, I proved the statement when $eta > frac{4lnbar{K}}{theta}$ (using the properties of the LogSumExp function). Furthermore, using the grid, I showed that
begin{align*}
&& left| eta - hat{eta} right| leq frac{ln bar{K}}{theta} \
&Rightarrow& left| etanu_{f,eta}(x,y) - hat{eta}nu_{f,hat{eta}}(x,y) right| leq frac{ln bar{K}}{theta}text{.}
end{align*}

However, I did not manage to go further than that.





Am I going in the right direction? If yes, what would be the trick for the last step? If no, what method should I consider to prove this statement? Note that I am not asking for a full proof, but rather some hints on how to proceed to show the result.










share|cite|improve this question
























  • What do you mean by "$Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$"? $bar yin mathcal{bar Y}$ and $Omega(x)inmathcal{bar Y}$. How can $bar{y} in Omega(y)$?
    – Hans
    Nov 24 at 8:30










  • $Omega(y)$ is a function that associates each element in $mathcal{Y}$ to one or several elements in $bar{mathcal{Y}}$. In other words $Omega(y) subseteq bar{mathcal{Y}}$. I modified the question to clarify this point.
    – M. P.
    Nov 26 at 12:52

















up vote
5
down vote

favorite
2












I am currently looking at Exercise 10.3, Chapter 10 of the book on Boosting by Schapire and Freund. More precisely, in the middle of the exercise they propose to use, without proof, the technical fact summarized below. Obviously, since it can be used without proof, I am now curious to know how to prove it!





To summarize the problem, let $mathcal{H}$ bet a set of functions $h : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. Define $text{co}(mathcal{H})$ as
begin{align*}
text{co}(mathcal{H}) = leftlbrace f : x,bar{y} mapsto sum_{t=1}^T a_t h_t(x,bar{y}) left| a_1,ldots,a_T geq 0; sum_{t=1}^Ta_t = 1; h_1,ldots h_T in mathcal{H}; Tgeq 1 right. rightrbracetext{.}
end{align*}

Notice that $f : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. For $f in text{co}left(mathcal{H}right)$, $eta > 0$, $bar{K} = |mathcal{bar{Y}}|$, and $(x,y) in mathcal{X} times mathcal{Y}$, let
begin{align*}
nu_{f,eta}(x,y) = - frac{1}{eta} lnleft(frac{1}{bar{K}} sum_{bar{y} in mathcal{bar{Y}}} expBig(-eta Omega(y,bar{y}) f(x,bar{y})Big)right)
end{align*}

where $Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$ and $-1$ otherwise. $Omega(y)$ associates each element from $mathcal{Y}$ to a subset of $mathcal{bar{Y}}$. Notice that $nu_{f,eta} : mathcal{X} times mathcal{Y} rightarrow [-1,1]$.



The technical fact is as follows. Let $1 geq theta > 0$ and define the grid:
begin{align*}
varepsilon_theta = leftlbrace frac{4lnbar{K}}{itheta} : i = 1, ldots, leftlceil frac{8lnbar{K}}{theta^2} rightrceil rightrbracetext{.}
end{align*}

For any $eta > 0$, let $hat{eta}$ be the closest value in $varepsilon_theta$ to $eta$. Then for all $f in text{co}(mathcal{H})$ and for all $(x,y) in mathcal{X} times mathcal{Y}$,
begin{align*}
left| nu_{f,eta}(x,y) - nu_{f,hat{eta}}(x,y) right| leq frac{theta}{4}text{.}
end{align*}





So far, I proved the statement when $eta > frac{4lnbar{K}}{theta}$ (using the properties of the LogSumExp function). Furthermore, using the grid, I showed that
begin{align*}
&& left| eta - hat{eta} right| leq frac{ln bar{K}}{theta} \
&Rightarrow& left| etanu_{f,eta}(x,y) - hat{eta}nu_{f,hat{eta}}(x,y) right| leq frac{ln bar{K}}{theta}text{.}
end{align*}

However, I did not manage to go further than that.





Am I going in the right direction? If yes, what would be the trick for the last step? If no, what method should I consider to prove this statement? Note that I am not asking for a full proof, but rather some hints on how to proceed to show the result.










share|cite|improve this question
























  • What do you mean by "$Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$"? $bar yin mathcal{bar Y}$ and $Omega(x)inmathcal{bar Y}$. How can $bar{y} in Omega(y)$?
    – Hans
    Nov 24 at 8:30










  • $Omega(y)$ is a function that associates each element in $mathcal{Y}$ to one or several elements in $bar{mathcal{Y}}$. In other words $Omega(y) subseteq bar{mathcal{Y}}$. I modified the question to clarify this point.
    – M. P.
    Nov 26 at 12:52















up vote
5
down vote

favorite
2









up vote
5
down vote

favorite
2






2





I am currently looking at Exercise 10.3, Chapter 10 of the book on Boosting by Schapire and Freund. More precisely, in the middle of the exercise they propose to use, without proof, the technical fact summarized below. Obviously, since it can be used without proof, I am now curious to know how to prove it!





To summarize the problem, let $mathcal{H}$ bet a set of functions $h : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. Define $text{co}(mathcal{H})$ as
begin{align*}
text{co}(mathcal{H}) = leftlbrace f : x,bar{y} mapsto sum_{t=1}^T a_t h_t(x,bar{y}) left| a_1,ldots,a_T geq 0; sum_{t=1}^Ta_t = 1; h_1,ldots h_T in mathcal{H}; Tgeq 1 right. rightrbracetext{.}
end{align*}

Notice that $f : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. For $f in text{co}left(mathcal{H}right)$, $eta > 0$, $bar{K} = |mathcal{bar{Y}}|$, and $(x,y) in mathcal{X} times mathcal{Y}$, let
begin{align*}
nu_{f,eta}(x,y) = - frac{1}{eta} lnleft(frac{1}{bar{K}} sum_{bar{y} in mathcal{bar{Y}}} expBig(-eta Omega(y,bar{y}) f(x,bar{y})Big)right)
end{align*}

where $Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$ and $-1$ otherwise. $Omega(y)$ associates each element from $mathcal{Y}$ to a subset of $mathcal{bar{Y}}$. Notice that $nu_{f,eta} : mathcal{X} times mathcal{Y} rightarrow [-1,1]$.



The technical fact is as follows. Let $1 geq theta > 0$ and define the grid:
begin{align*}
varepsilon_theta = leftlbrace frac{4lnbar{K}}{itheta} : i = 1, ldots, leftlceil frac{8lnbar{K}}{theta^2} rightrceil rightrbracetext{.}
end{align*}

For any $eta > 0$, let $hat{eta}$ be the closest value in $varepsilon_theta$ to $eta$. Then for all $f in text{co}(mathcal{H})$ and for all $(x,y) in mathcal{X} times mathcal{Y}$,
begin{align*}
left| nu_{f,eta}(x,y) - nu_{f,hat{eta}}(x,y) right| leq frac{theta}{4}text{.}
end{align*}





So far, I proved the statement when $eta > frac{4lnbar{K}}{theta}$ (using the properties of the LogSumExp function). Furthermore, using the grid, I showed that
begin{align*}
&& left| eta - hat{eta} right| leq frac{ln bar{K}}{theta} \
&Rightarrow& left| etanu_{f,eta}(x,y) - hat{eta}nu_{f,hat{eta}}(x,y) right| leq frac{ln bar{K}}{theta}text{.}
end{align*}

However, I did not manage to go further than that.





Am I going in the right direction? If yes, what would be the trick for the last step? If no, what method should I consider to prove this statement? Note that I am not asking for a full proof, but rather some hints on how to proceed to show the result.










share|cite|improve this question















I am currently looking at Exercise 10.3, Chapter 10 of the book on Boosting by Schapire and Freund. More precisely, in the middle of the exercise they propose to use, without proof, the technical fact summarized below. Obviously, since it can be used without proof, I am now curious to know how to prove it!





To summarize the problem, let $mathcal{H}$ bet a set of functions $h : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. Define $text{co}(mathcal{H})$ as
begin{align*}
text{co}(mathcal{H}) = leftlbrace f : x,bar{y} mapsto sum_{t=1}^T a_t h_t(x,bar{y}) left| a_1,ldots,a_T geq 0; sum_{t=1}^Ta_t = 1; h_1,ldots h_T in mathcal{H}; Tgeq 1 right. rightrbracetext{.}
end{align*}

Notice that $f : mathcal{X} times mathcal{bar{Y}} rightarrow [-1,1]$. For $f in text{co}left(mathcal{H}right)$, $eta > 0$, $bar{K} = |mathcal{bar{Y}}|$, and $(x,y) in mathcal{X} times mathcal{Y}$, let
begin{align*}
nu_{f,eta}(x,y) = - frac{1}{eta} lnleft(frac{1}{bar{K}} sum_{bar{y} in mathcal{bar{Y}}} expBig(-eta Omega(y,bar{y}) f(x,bar{y})Big)right)
end{align*}

where $Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$ and $-1$ otherwise. $Omega(y)$ associates each element from $mathcal{Y}$ to a subset of $mathcal{bar{Y}}$. Notice that $nu_{f,eta} : mathcal{X} times mathcal{Y} rightarrow [-1,1]$.



The technical fact is as follows. Let $1 geq theta > 0$ and define the grid:
begin{align*}
varepsilon_theta = leftlbrace frac{4lnbar{K}}{itheta} : i = 1, ldots, leftlceil frac{8lnbar{K}}{theta^2} rightrceil rightrbracetext{.}
end{align*}

For any $eta > 0$, let $hat{eta}$ be the closest value in $varepsilon_theta$ to $eta$. Then for all $f in text{co}(mathcal{H})$ and for all $(x,y) in mathcal{X} times mathcal{Y}$,
begin{align*}
left| nu_{f,eta}(x,y) - nu_{f,hat{eta}}(x,y) right| leq frac{theta}{4}text{.}
end{align*}





So far, I proved the statement when $eta > frac{4lnbar{K}}{theta}$ (using the properties of the LogSumExp function). Furthermore, using the grid, I showed that
begin{align*}
&& left| eta - hat{eta} right| leq frac{ln bar{K}}{theta} \
&Rightarrow& left| etanu_{f,eta}(x,y) - hat{eta}nu_{f,hat{eta}}(x,y) right| leq frac{ln bar{K}}{theta}text{.}
end{align*}

However, I did not manage to go further than that.





Am I going in the right direction? If yes, what would be the trick for the last step? If no, what method should I consider to prove this statement? Note that I am not asking for a full proof, but rather some hints on how to proceed to show the result.







real-analysis statistics inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday

























asked Nov 16 at 11:04









M. P.

37117




37117












  • What do you mean by "$Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$"? $bar yin mathcal{bar Y}$ and $Omega(x)inmathcal{bar Y}$. How can $bar{y} in Omega(y)$?
    – Hans
    Nov 24 at 8:30










  • $Omega(y)$ is a function that associates each element in $mathcal{Y}$ to one or several elements in $bar{mathcal{Y}}$. In other words $Omega(y) subseteq bar{mathcal{Y}}$. I modified the question to clarify this point.
    – M. P.
    Nov 26 at 12:52




















  • What do you mean by "$Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$"? $bar yin mathcal{bar Y}$ and $Omega(x)inmathcal{bar Y}$. How can $bar{y} in Omega(y)$?
    – Hans
    Nov 24 at 8:30










  • $Omega(y)$ is a function that associates each element in $mathcal{Y}$ to one or several elements in $bar{mathcal{Y}}$. In other words $Omega(y) subseteq bar{mathcal{Y}}$. I modified the question to clarify this point.
    – M. P.
    Nov 26 at 12:52


















What do you mean by "$Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$"? $bar yin mathcal{bar Y}$ and $Omega(x)inmathcal{bar Y}$. How can $bar{y} in Omega(y)$?
– Hans
Nov 24 at 8:30




What do you mean by "$Omega(y,bar{y}) = 1$ if $bar{y} in Omega(y)$"? $bar yin mathcal{bar Y}$ and $Omega(x)inmathcal{bar Y}$. How can $bar{y} in Omega(y)$?
– Hans
Nov 24 at 8:30












$Omega(y)$ is a function that associates each element in $mathcal{Y}$ to one or several elements in $bar{mathcal{Y}}$. In other words $Omega(y) subseteq bar{mathcal{Y}}$. I modified the question to clarify this point.
– M. P.
Nov 26 at 12:52






$Omega(y)$ is a function that associates each element in $mathcal{Y}$ to one or several elements in $bar{mathcal{Y}}$. In other words $Omega(y) subseteq bar{mathcal{Y}}$. I modified the question to clarify this point.
– M. P.
Nov 26 at 12:52

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001005%2fproof-of-a-technical-fact-in-the-book-of-schapire-and-freund-on-boosting%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001005%2fproof-of-a-technical-fact-in-the-book-of-schapire-and-freund-on-boosting%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna