If $|langle f, g rangle| = | f |_2 |g|_2$ then $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $












0












$begingroup$



Show the following are equivalent, for $f, g in L^2[a,b]$



a. $|langle f, g rangle| = |f|_2 |g|_2$



b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $




where $langle cdot , cdot rangle$ : inner product.





Try



(b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$



$|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $



But I'm stuck at (a $Rightarrow$ b).










share|cite|improve this question











$endgroup$

















    0












    $begingroup$



    Show the following are equivalent, for $f, g in L^2[a,b]$



    a. $|langle f, g rangle| = |f|_2 |g|_2$



    b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $




    where $langle cdot , cdot rangle$ : inner product.





    Try



    (b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$



    $|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $



    But I'm stuck at (a $Rightarrow$ b).










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$



      Show the following are equivalent, for $f, g in L^2[a,b]$



      a. $|langle f, g rangle| = |f|_2 |g|_2$



      b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $




      where $langle cdot , cdot rangle$ : inner product.





      Try



      (b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$



      $|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $



      But I'm stuck at (a $Rightarrow$ b).










      share|cite|improve this question











      $endgroup$





      Show the following are equivalent, for $f, g in L^2[a,b]$



      a. $|langle f, g rangle| = |f|_2 |g|_2$



      b. $exists alpha, beta in mathbb{R} $ s.t. $alpha f = beta g $




      where $langle cdot , cdot rangle$ : inner product.





      Try



      (b $Rightarrow$ a) If $alpha=0$, things are trivial. Otherwise, note $f = frac{beta}{alpha} g$



      $|langle f, g rangle| = |frac{beta}{alpha}| langle g, g rangle = |frac{beta}{alpha}| |g|_2 cdot|g|_2 = |f|_2 |g|_2 $



      But I'm stuck at (a $Rightarrow$ b).







      real-analysis measure-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 20 '18 at 13:53









      Nathanael Skrepek

      1,6191515




      1,6191515










      asked Dec 20 '18 at 12:53









      MoreblueMoreblue

      8791216




      8791216






















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
          Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047499%2fif-langle-f-g-rangle-f-2-g-2-then-exists-alpha-beta-in%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
            Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.






            share|cite|improve this answer











            $endgroup$


















              3












              $begingroup$

              One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
              Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.






              share|cite|improve this answer











              $endgroup$
















                3












                3








                3





                $begingroup$

                One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
                Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.






                share|cite|improve this answer











                $endgroup$



                One can consider the function $f:mathbb{R}rightarrow mathbb{R},xmapsto ||f-xg||^2$. Since we have $||f-xg||^2=langle f-xg,f-xgrangle=||f||^2-2xlangle f,grangle + x^2||g||^2$, this gives rise to a quadratic function, which has a real root, because the discriminant is $left(2langle f,grangleright)^2-4||u||^2||v||^2=4langle f,grangle^2-4langle f,grangle^2=0$.
                Hence there is some $xin mathbb{R}$, s.t. $f-xg=0$, or equivalently $f=xg$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 20 '18 at 15:13









                BigbearZzz

                8,58221652




                8,58221652










                answered Dec 20 '18 at 13:11









                Student7Student7

                2089




                2089






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047499%2fif-langle-f-g-rangle-f-2-g-2-then-exists-alpha-beta-in%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna