Radius of convergence for three series
$begingroup$
I need to find the radius of convergence of the 3 following series, but there are no solutions, so I don't know if my steps are correct.
1) $sum_{n=0}^{infty}x^{n!}$
2) $sum_{n=0}^{infty} frac{1}{1+2^n}x^n$
3) $sum_{n=0}^{infty} frac{1}{1+n3^n}x^n$
1) For the first, $a_n=1$ iff $exists k : k!=n, k in mathbb{N}$, zero elsewhere. So the radius is given by $frac{1}{lim : sup_{n to infty}sqrt[n]{|a_n|}}$ and the limit superior is max{1,1,0,0,0,1,0,0,....}=1
Thus the radius of convergence is 1.
On the border, we have 1 and -1 to an even power (factorial), which always yields 1, and not 0. So it diverges for both endpoints.
2) Here, we use $rho = frac{a_n}{a_{n+1}}$ So we get : $lim_{n to infty}(frac{1+2^{n+1}}{1+2^{n}})=2$ On the border, we have $frac{2^n}{1+2^n}=frac{2^n}{2^n}frac{1}{frac{1}{2^n}+1}=1$ for $n to infty$, so not toward 0, and thus it diverges.
We also have $frac{(-1)^n(2)^n}{1+2^n}$, which is an alternating serie. According to the alternating serie test, it should be converging toward 0 for $n to infty$ which isn't the case here, so it also diverges for $x=-2$
3) Here, we get $frac{1+3^{n+1}(n+1)}{1+3^nn}= frac{3^nn}{3^nn}frac{frac{1}{3^nn}+frac{3(n+1)}{n}}{1+ frac{1}{3^nn}}=frac{3}{1}=3$ for $n to infty$
On the border, we have $frac{3^n}{1+n3^n}=frac{1}{frac{1}{3^n}+n}$ and $frac{(-1)^n3^n}{1+n3^n}=frac{(-1)^n}{frac{1}{3^n}+n}$. Both cases give the harmonic serie, which diverges. So no convergence on the border.
Are my results correct ? If not, what did I do wrong or forgot ?
Thanks for your help !
real-analysis sequences-and-series convergence power-series divergent-series
$endgroup$
add a comment |
$begingroup$
I need to find the radius of convergence of the 3 following series, but there are no solutions, so I don't know if my steps are correct.
1) $sum_{n=0}^{infty}x^{n!}$
2) $sum_{n=0}^{infty} frac{1}{1+2^n}x^n$
3) $sum_{n=0}^{infty} frac{1}{1+n3^n}x^n$
1) For the first, $a_n=1$ iff $exists k : k!=n, k in mathbb{N}$, zero elsewhere. So the radius is given by $frac{1}{lim : sup_{n to infty}sqrt[n]{|a_n|}}$ and the limit superior is max{1,1,0,0,0,1,0,0,....}=1
Thus the radius of convergence is 1.
On the border, we have 1 and -1 to an even power (factorial), which always yields 1, and not 0. So it diverges for both endpoints.
2) Here, we use $rho = frac{a_n}{a_{n+1}}$ So we get : $lim_{n to infty}(frac{1+2^{n+1}}{1+2^{n}})=2$ On the border, we have $frac{2^n}{1+2^n}=frac{2^n}{2^n}frac{1}{frac{1}{2^n}+1}=1$ for $n to infty$, so not toward 0, and thus it diverges.
We also have $frac{(-1)^n(2)^n}{1+2^n}$, which is an alternating serie. According to the alternating serie test, it should be converging toward 0 for $n to infty$ which isn't the case here, so it also diverges for $x=-2$
3) Here, we get $frac{1+3^{n+1}(n+1)}{1+3^nn}= frac{3^nn}{3^nn}frac{frac{1}{3^nn}+frac{3(n+1)}{n}}{1+ frac{1}{3^nn}}=frac{3}{1}=3$ for $n to infty$
On the border, we have $frac{3^n}{1+n3^n}=frac{1}{frac{1}{3^n}+n}$ and $frac{(-1)^n3^n}{1+n3^n}=frac{(-1)^n}{frac{1}{3^n}+n}$. Both cases give the harmonic serie, which diverges. So no convergence on the border.
Are my results correct ? If not, what did I do wrong or forgot ?
Thanks for your help !
real-analysis sequences-and-series convergence power-series divergent-series
$endgroup$
add a comment |
$begingroup$
I need to find the radius of convergence of the 3 following series, but there are no solutions, so I don't know if my steps are correct.
1) $sum_{n=0}^{infty}x^{n!}$
2) $sum_{n=0}^{infty} frac{1}{1+2^n}x^n$
3) $sum_{n=0}^{infty} frac{1}{1+n3^n}x^n$
1) For the first, $a_n=1$ iff $exists k : k!=n, k in mathbb{N}$, zero elsewhere. So the radius is given by $frac{1}{lim : sup_{n to infty}sqrt[n]{|a_n|}}$ and the limit superior is max{1,1,0,0,0,1,0,0,....}=1
Thus the radius of convergence is 1.
On the border, we have 1 and -1 to an even power (factorial), which always yields 1, and not 0. So it diverges for both endpoints.
2) Here, we use $rho = frac{a_n}{a_{n+1}}$ So we get : $lim_{n to infty}(frac{1+2^{n+1}}{1+2^{n}})=2$ On the border, we have $frac{2^n}{1+2^n}=frac{2^n}{2^n}frac{1}{frac{1}{2^n}+1}=1$ for $n to infty$, so not toward 0, and thus it diverges.
We also have $frac{(-1)^n(2)^n}{1+2^n}$, which is an alternating serie. According to the alternating serie test, it should be converging toward 0 for $n to infty$ which isn't the case here, so it also diverges for $x=-2$
3) Here, we get $frac{1+3^{n+1}(n+1)}{1+3^nn}= frac{3^nn}{3^nn}frac{frac{1}{3^nn}+frac{3(n+1)}{n}}{1+ frac{1}{3^nn}}=frac{3}{1}=3$ for $n to infty$
On the border, we have $frac{3^n}{1+n3^n}=frac{1}{frac{1}{3^n}+n}$ and $frac{(-1)^n3^n}{1+n3^n}=frac{(-1)^n}{frac{1}{3^n}+n}$. Both cases give the harmonic serie, which diverges. So no convergence on the border.
Are my results correct ? If not, what did I do wrong or forgot ?
Thanks for your help !
real-analysis sequences-and-series convergence power-series divergent-series
$endgroup$
I need to find the radius of convergence of the 3 following series, but there are no solutions, so I don't know if my steps are correct.
1) $sum_{n=0}^{infty}x^{n!}$
2) $sum_{n=0}^{infty} frac{1}{1+2^n}x^n$
3) $sum_{n=0}^{infty} frac{1}{1+n3^n}x^n$
1) For the first, $a_n=1$ iff $exists k : k!=n, k in mathbb{N}$, zero elsewhere. So the radius is given by $frac{1}{lim : sup_{n to infty}sqrt[n]{|a_n|}}$ and the limit superior is max{1,1,0,0,0,1,0,0,....}=1
Thus the radius of convergence is 1.
On the border, we have 1 and -1 to an even power (factorial), which always yields 1, and not 0. So it diverges for both endpoints.
2) Here, we use $rho = frac{a_n}{a_{n+1}}$ So we get : $lim_{n to infty}(frac{1+2^{n+1}}{1+2^{n}})=2$ On the border, we have $frac{2^n}{1+2^n}=frac{2^n}{2^n}frac{1}{frac{1}{2^n}+1}=1$ for $n to infty$, so not toward 0, and thus it diverges.
We also have $frac{(-1)^n(2)^n}{1+2^n}$, which is an alternating serie. According to the alternating serie test, it should be converging toward 0 for $n to infty$ which isn't the case here, so it also diverges for $x=-2$
3) Here, we get $frac{1+3^{n+1}(n+1)}{1+3^nn}= frac{3^nn}{3^nn}frac{frac{1}{3^nn}+frac{3(n+1)}{n}}{1+ frac{1}{3^nn}}=frac{3}{1}=3$ for $n to infty$
On the border, we have $frac{3^n}{1+n3^n}=frac{1}{frac{1}{3^n}+n}$ and $frac{(-1)^n3^n}{1+n3^n}=frac{(-1)^n}{frac{1}{3^n}+n}$. Both cases give the harmonic serie, which diverges. So no convergence on the border.
Are my results correct ? If not, what did I do wrong or forgot ?
Thanks for your help !
real-analysis sequences-and-series convergence power-series divergent-series
real-analysis sequences-and-series convergence power-series divergent-series
edited Dec 20 '18 at 13:04
David G. Stork
10.9k31432
10.9k31432
asked Dec 20 '18 at 12:58
PoujhPoujh
612516
612516
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For the first
the ratio test gives the limit
$$lim_{nto+infty}leftlvert frac{x^{(n+1)!}}{x^{n!}}rightrvert=lim_{nto+infty} lvert xrvert^{ncdot n!}$$
if $lvert xrvert<1$, the limit is zero.
if $lvert xrvert>1$ the limit is infinity.
the radius is $R=1$.
When you look for the radius only, you do not need the convergence on the border.
$endgroup$
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
1
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
1
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
|
show 2 more comments
$begingroup$
$(1)$ $$displaystylesum_{n=0}^{infty}x^{n!}<sum_{n=0}^{infty}x^n$$ and $displaystylesum_{n=0}^{infty}x^n$ converges for $|x|<1$.
So Radius of convergence is $1$
$(2)$ Use D'Alembert's ratio test: $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+2^n}{1+2^{n+1}}right||x|<1 implies |x|<2$$
Radius of convergence is $2$.
$(3)$ $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+n3^n}{1+(n+1)3^{n+1}}right||x|<1 implies |x|<3$$ Radius of convergence is $3$
(When you require radius of convergence, convergence of boundary is not necessary)
$endgroup$
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
1
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047504%2fradius-of-convergence-for-three-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For the first
the ratio test gives the limit
$$lim_{nto+infty}leftlvert frac{x^{(n+1)!}}{x^{n!}}rightrvert=lim_{nto+infty} lvert xrvert^{ncdot n!}$$
if $lvert xrvert<1$, the limit is zero.
if $lvert xrvert>1$ the limit is infinity.
the radius is $R=1$.
When you look for the radius only, you do not need the convergence on the border.
$endgroup$
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
1
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
1
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
|
show 2 more comments
$begingroup$
For the first
the ratio test gives the limit
$$lim_{nto+infty}leftlvert frac{x^{(n+1)!}}{x^{n!}}rightrvert=lim_{nto+infty} lvert xrvert^{ncdot n!}$$
if $lvert xrvert<1$, the limit is zero.
if $lvert xrvert>1$ the limit is infinity.
the radius is $R=1$.
When you look for the radius only, you do not need the convergence on the border.
$endgroup$
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
1
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
1
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
|
show 2 more comments
$begingroup$
For the first
the ratio test gives the limit
$$lim_{nto+infty}leftlvert frac{x^{(n+1)!}}{x^{n!}}rightrvert=lim_{nto+infty} lvert xrvert^{ncdot n!}$$
if $lvert xrvert<1$, the limit is zero.
if $lvert xrvert>1$ the limit is infinity.
the radius is $R=1$.
When you look for the radius only, you do not need the convergence on the border.
$endgroup$
For the first
the ratio test gives the limit
$$lim_{nto+infty}leftlvert frac{x^{(n+1)!}}{x^{n!}}rightrvert=lim_{nto+infty} lvert xrvert^{ncdot n!}$$
if $lvert xrvert<1$, the limit is zero.
if $lvert xrvert>1$ the limit is infinity.
the radius is $R=1$.
When you look for the radius only, you do not need the convergence on the border.
edited Dec 20 '18 at 17:30
user10354138
7,3872925
7,3872925
answered Dec 20 '18 at 13:09
hamam_Abdallahhamam_Abdallah
38k21634
38k21634
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
1
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
1
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
|
show 2 more comments
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
1
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
1
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
Something is wrong with the total rep.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:13
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
What do you mean exactly with "wrong with the total rep." ? Ans just for 1), your method seems in fact a lot easier but would my method also be correct for 1) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:15
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
$begingroup$
@Poujh This post if for managers.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:16
1
1
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
$begingroup$
@Poujh Your answerS are correct.but no need for the border.
$endgroup$
– hamam_Abdallah
Dec 20 '18 at 13:19
1
1
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
$begingroup$
I’m sorry, I don’t follow. How is $frac{x^{(n+1)!}}{x^{n!}} not equal to $frac{x^{n*n!}$
$endgroup$
– R.Jackson
Dec 20 '18 at 13:42
|
show 2 more comments
$begingroup$
$(1)$ $$displaystylesum_{n=0}^{infty}x^{n!}<sum_{n=0}^{infty}x^n$$ and $displaystylesum_{n=0}^{infty}x^n$ converges for $|x|<1$.
So Radius of convergence is $1$
$(2)$ Use D'Alembert's ratio test: $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+2^n}{1+2^{n+1}}right||x|<1 implies |x|<2$$
Radius of convergence is $2$.
$(3)$ $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+n3^n}{1+(n+1)3^{n+1}}right||x|<1 implies |x|<3$$ Radius of convergence is $3$
(When you require radius of convergence, convergence of boundary is not necessary)
$endgroup$
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
1
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
add a comment |
$begingroup$
$(1)$ $$displaystylesum_{n=0}^{infty}x^{n!}<sum_{n=0}^{infty}x^n$$ and $displaystylesum_{n=0}^{infty}x^n$ converges for $|x|<1$.
So Radius of convergence is $1$
$(2)$ Use D'Alembert's ratio test: $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+2^n}{1+2^{n+1}}right||x|<1 implies |x|<2$$
Radius of convergence is $2$.
$(3)$ $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+n3^n}{1+(n+1)3^{n+1}}right||x|<1 implies |x|<3$$ Radius of convergence is $3$
(When you require radius of convergence, convergence of boundary is not necessary)
$endgroup$
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
1
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
add a comment |
$begingroup$
$(1)$ $$displaystylesum_{n=0}^{infty}x^{n!}<sum_{n=0}^{infty}x^n$$ and $displaystylesum_{n=0}^{infty}x^n$ converges for $|x|<1$.
So Radius of convergence is $1$
$(2)$ Use D'Alembert's ratio test: $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+2^n}{1+2^{n+1}}right||x|<1 implies |x|<2$$
Radius of convergence is $2$.
$(3)$ $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+n3^n}{1+(n+1)3^{n+1}}right||x|<1 implies |x|<3$$ Radius of convergence is $3$
(When you require radius of convergence, convergence of boundary is not necessary)
$endgroup$
$(1)$ $$displaystylesum_{n=0}^{infty}x^{n!}<sum_{n=0}^{infty}x^n$$ and $displaystylesum_{n=0}^{infty}x^n$ converges for $|x|<1$.
So Radius of convergence is $1$
$(2)$ Use D'Alembert's ratio test: $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+2^n}{1+2^{n+1}}right||x|<1 implies |x|<2$$
Radius of convergence is $2$.
$(3)$ $$displaystylelim_{ntoinfty}left|dfrac{a_{n+1}x^{n+1}}{a_nx^n}right|<1implieslim_{ntoinfty}left|dfrac{1+n3^n}{1+(n+1)3^{n+1}}right||x|<1 implies |x|<3$$ Radius of convergence is $3$
(When you require radius of convergence, convergence of boundary is not necessary)
edited Dec 20 '18 at 13:30
answered Dec 20 '18 at 13:10
Yadati KiranYadati Kiran
1,763619
1,763619
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
1
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
add a comment |
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
1
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
$begingroup$
Just for 1), do you think my method would also be correct (even if yours is easier) ?
$endgroup$
– Poujh
Dec 20 '18 at 13:19
1
1
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
$begingroup$
@Poujh: Yes it's correct. Your argument for $(1)$ is better than mine.
$endgroup$
– Yadati Kiran
Dec 20 '18 at 13:22
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3047504%2fradius-of-convergence-for-three-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown