A Difficult Definite Integral $int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$












4












$begingroup$


Problem



Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



Comment



It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




$$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
where $f(x) in C[-1,1].$




begin{align*}
require{begingroup}
begingroup
newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
&= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
&= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
&= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
&= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
&= 3pi^2
endgroup
end{align*}



But any other solution?










share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    Problem



    Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



    Comment



    It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




    $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
    where $f(x) in C[-1,1].$




    begin{align*}
    require{begingroup}
    begingroup
    newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
    &= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
    &= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
    &= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
    &= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
    &= 3pi^2
    endgroup
    end{align*}



    But any other solution?










    share|cite|improve this question











    $endgroup$















      4












      4








      4





      $begingroup$


      Problem



      Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



      Comment



      It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




      $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
      where $f(x) in C[-1,1].$




      begin{align*}
      require{begingroup}
      begingroup
      newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
      &= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
      &= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
      &= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
      &= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
      &= 3pi^2
      endgroup
      end{align*}



      But any other solution?










      share|cite|improve this question











      $endgroup$




      Problem



      Evaluate $$int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t.$$



      Comment



      It's very complicated to compute the integral applying normal method. I obtain the result resorting to the skillful formula




      $$int_0^{2pi}xf(cos x){rm d}x=piint_0^{2pi}f(sin x){rm d}x,$$
      where $f(x) in C[-1,1].$




      begin{align*}
      require{begingroup}
      begingroup
      newcommand{dd}{;{rm d}}int_0^{2pi} (t-sin t)(1-cos t)^2 dd t
      &= int_0^{2pi} t(1-cos t)^2 dd t - int_0^{2pi} sin t(1-cos t)^2 dd t \
      &= piint_0^{2pi} (1-sin t)^2 dd t - int_0^{2pi} (1-cos t)^2 dd (1-cos t) \
      &= piint_0^{2pi} left(frac32-frac12cos2t-2sin tright) dd t - left[frac13(1-cos t)^3right]_0^{2pi}\
      &= pileft[frac32t-frac14sin2t+2cos tright]_0^{2pi}\
      &= 3pi^2
      endgroup
      end{align*}



      But any other solution?







      integration definite-integrals trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 28 '18 at 16:31









      Martin Sleziak

      44.6k10118272




      44.6k10118272










      asked Dec 28 '18 at 13:48









      mengdie1982mengdie1982

      4,897618




      4,897618






















          4 Answers
          4






          active

          oldest

          votes


















          6












          $begingroup$

          With substitution $t=pi+x$ we see that
          $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
          the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
          $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






          share|cite|improve this answer









          $endgroup$





















            4












            $begingroup$

            Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
            $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
            Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
            begin{align}
            int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
            &= int_0^{2pi} xf(x),dx \
            &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
            &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
            end{align}



            Now recall the formula for the $x$-coordinate of the centroid:
            $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



            since centroid is clearly at $x = pi$ by symmetry.



            Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



            this integral being a lot easier than the original one.



            It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






            share|cite|improve this answer











            $endgroup$





















              1












              $begingroup$

              The integral
              $$
              int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
              $$

              is immediate. Thus we can concentrate on
              $$
              int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
              16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
              $$

              For integer $a$, we have
              $$
              int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
              $$

              Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
              $$
              int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
              $$






              share|cite|improve this answer









              $endgroup$





















                1












                $begingroup$

                begin{align}
                &int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t\
                &=left[frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2tright]_0^{2pi} \
                &=left[frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 tright]_0^{2pi}\
                &=3pi ^2
                end{align}






                share|cite|improve this answer











                $endgroup$













                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral-int-02-pit-sin-t1-cos-t2-rm-dt%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  6












                  $begingroup$

                  With substitution $t=pi+x$ we see that
                  $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                  the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                  $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






                  share|cite|improve this answer









                  $endgroup$


















                    6












                    $begingroup$

                    With substitution $t=pi+x$ we see that
                    $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                    the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                    $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






                    share|cite|improve this answer









                    $endgroup$
















                      6












                      6








                      6





                      $begingroup$

                      With substitution $t=pi+x$ we see that
                      $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                      the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                      $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$






                      share|cite|improve this answer









                      $endgroup$



                      With substitution $t=pi+x$ we see that
                      $$I=int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_{-pi}^{pi}(pi+x+sin x)(1+cos x)^2{rm d}x.$$
                      the part $(x+sin x)(1+cos x)^2$ is an odd function so it's integral over $[-pi,pi]$ is zero, then
                      $$I=piint_{-pi}^{pi}(1+cos x)^2{rm d}x=piint_{-pi}^{pi}dfrac32+2cos x+dfrac12cos2x{rm d}x=color{blue}{3pi^2}$$







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 28 '18 at 16:26









                      NosratiNosrati

                      26.5k62354




                      26.5k62354























                          4












                          $begingroup$

                          Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                          $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                          Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                          begin{align}
                          int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                          &= int_0^{2pi} xf(x),dx \
                          &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                          &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                          end{align}



                          Now recall the formula for the $x$-coordinate of the centroid:
                          $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                          since centroid is clearly at $x = pi$ by symmetry.



                          Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                          this integral being a lot easier than the original one.



                          It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                          share|cite|improve this answer











                          $endgroup$


















                            4












                            $begingroup$

                            Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                            $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                            Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                            begin{align}
                            int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                            &= int_0^{2pi} xf(x),dx \
                            &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                            &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                            end{align}



                            Now recall the formula for the $x$-coordinate of the centroid:
                            $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                            since centroid is clearly at $x = pi$ by symmetry.



                            Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                            this integral being a lot easier than the original one.



                            It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                            share|cite|improve this answer











                            $endgroup$
















                              4












                              4








                              4





                              $begingroup$

                              Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                              $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                              Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                              begin{align}
                              int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                              &= int_0^{2pi} xf(x),dx \
                              &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                              &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                              end{align}



                              Now recall the formula for the $x$-coordinate of the centroid:
                              $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                              since centroid is clearly at $x = pi$ by symmetry.



                              Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                              this integral being a lot easier than the original one.



                              It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$






                              share|cite|improve this answer











                              $endgroup$



                              Notice that your integral is in fact an area integral of the function $(x,y) mapsto x$ over one arch of a cycloid given by
                              $$begin{cases} x = t - sin t \ y = 1-cos tend{cases}$$
                              Indeed, if we assume that the cycloid is explicitly given by $y = f(x)$, we have
                              begin{align}
                              int_{text{cycloid}} x ,dA &= int_0^{2pi} int_0^{f(x)} x,dy,dx\
                              &= int_0^{2pi} xf(x),dx \
                              &= begin{bmatrix} x = t-sin t \ f(x) = 1-cos t \ dx = (1-cos t),dtend{bmatrix}\
                              &= int_0^{2pi} (t-sin t)(1-cos t)^2,dt
                              end{align}



                              Now recall the formula for the $x$-coordinate of the centroid:
                              $$frac1A int_{text{cycloid}} x ,dA = xtext{-coordinate of the centroid} = pi$$



                              since centroid is clearly at $x = pi$ by symmetry.



                              Using the same metrod as above area of the cycloid is $$A = int_{text{cycloid}}dA = int_0^{2pi} (1-cos t)^2 ,dt = 3pi$$



                              this integral being a lot easier than the original one.



                              It follows $$int_{text{cycloid}} x ,dA = Api = 3pi^2$$







                              share|cite|improve this answer














                              share|cite|improve this answer



                              share|cite|improve this answer








                              edited Dec 28 '18 at 14:59

























                              answered Dec 28 '18 at 14:50









                              mechanodroidmechanodroid

                              27.8k62447




                              27.8k62447























                                  1












                                  $begingroup$

                                  The integral
                                  $$
                                  int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                  $$

                                  is immediate. Thus we can concentrate on
                                  $$
                                  int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                  16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                  $$

                                  For integer $a$, we have
                                  $$
                                  int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                  $$

                                  Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                  $$
                                  int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                  $$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    The integral
                                    $$
                                    int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                    $$

                                    is immediate. Thus we can concentrate on
                                    $$
                                    int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                    16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                    $$

                                    For integer $a$, we have
                                    $$
                                    int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                    $$

                                    Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                    $$
                                    int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                    $$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      The integral
                                      $$
                                      int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                      $$

                                      is immediate. Thus we can concentrate on
                                      $$
                                      int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                      16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                      $$

                                      For integer $a$, we have
                                      $$
                                      int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                      $$

                                      Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                      $$
                                      int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                      $$






                                      share|cite|improve this answer









                                      $endgroup$



                                      The integral
                                      $$
                                      int_0^{2pi}sin t(1-cos t)^2,dt=Bigl[frac{(1-cos t)^3}{3}Bigr]_0^{2pi}=0
                                      $$

                                      is immediate. Thus we can concentrate on
                                      $$
                                      int_0^{2pi}t(1-cos t)^2,dt=[dots t=2u dots]=
                                      16int_0^{pi}usin^4u,du=int_0^pi u(e^{iu}-e^{-iu})^4,du
                                      $$

                                      For integer $a$, we have
                                      $$
                                      int_0^pi ue^{2iau},du=Bigl[frac{ue^{2iau}}{2ia}Bigr]_0^pi-frac{1}{2ia}int_0^pi e^{2iau},du=frac{pi e^{2iapi}}{2ia}+frac{1}{4a^2}Bigl[e^{2iau}Bigr]_0^pi=frac{pi}{2ia}
                                      $$

                                      Since $(e^{iu}-e^{-iu})^4=e^{4iu}-4e^{2iu}+6-4e^{-2iu}+e^{-4iu}$ we see that
                                      $$
                                      int_0^pi usin^4u,du=int_0^pi 6u,du=3pi^2
                                      $$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 28 '18 at 15:39









                                      egregegreg

                                      182k1486204




                                      182k1486204























                                          1












                                          $begingroup$

                                          begin{align}
                                          &int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t\
                                          &=left[frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2tright]_0^{2pi} \
                                          &=left[frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 tright]_0^{2pi}\
                                          &=3pi ^2
                                          end{align}






                                          share|cite|improve this answer











                                          $endgroup$


















                                            1












                                            $begingroup$

                                            begin{align}
                                            &int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t\
                                            &=left[frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2tright]_0^{2pi} \
                                            &=left[frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 tright]_0^{2pi}\
                                            &=3pi ^2
                                            end{align}






                                            share|cite|improve this answer











                                            $endgroup$
















                                              1












                                              1








                                              1





                                              $begingroup$

                                              begin{align}
                                              &int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t\
                                              &=left[frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2tright]_0^{2pi} \
                                              &=left[frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 tright]_0^{2pi}\
                                              &=3pi ^2
                                              end{align}






                                              share|cite|improve this answer











                                              $endgroup$



                                              begin{align}
                                              &int_0^{2pi}(t-sin t)(1-cos t)^2{rm d}t=int_0^{2pi}t+t{cos }^2 t-2tcos t-sin t -sin t{cos }^2 t+sin 2t{rm d}t\
                                              &=left[frac{1}{2}t^2+frac{1}{2}t^2+frac{1}{4}tsin 2t-frac{1}{4}t^2+frac{1}{8}cos 2t-2tsin t-2cos t+cos t+frac{1}{3}{cos }^3t-frac{1}{2}cos 2tright]_0^{2pi} \
                                              &=left[frac{3}{4}t^2+frac{1}{4}tsin 2t-frac{3}{8}cos 2t-2tsin t-cos t+frac{1}{3}{cos }^3 tright]_0^{2pi}\
                                              &=3pi ^2
                                              end{align}







                                              share|cite|improve this answer














                                              share|cite|improve this answer



                                              share|cite|improve this answer








                                              edited Dec 29 '18 at 5:05









                                              DavidG

                                              2,1321724




                                              2,1321724










                                              answered Dec 28 '18 at 14:12









                                              yavaryavar

                                              993




                                              993






























                                                  draft saved

                                                  draft discarded




















































                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid



                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                  Use MathJax to format equations. MathJax reference.


                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function () {
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054898%2fa-difficult-definite-integral-int-02-pit-sin-t1-cos-t2-rm-dt%23new-answer', 'question_page');
                                                  }
                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Bressuire

                                                  Cabo Verde

                                                  Gyllenstierna