How is $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n bar X bar X'$?












1












$begingroup$



Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
and $bar X = sum X_j / n $



Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
bar X bar X'$




I see that



$sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$



    Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
    and $bar X = sum X_j / n $



    Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
    bar X bar X'$




    I see that



    $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?










    share|cite|improve this question









    $endgroup$















      1












      1








      1


      1



      $begingroup$



      Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
      and $bar X = sum X_j / n $



      Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
      bar X bar X'$




      I see that



      $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?










      share|cite|improve this question









      $endgroup$





      Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
      and $bar X = sum X_j / n $



      Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
      bar X bar X'$




      I see that



      $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?







      linear-algebra probability






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 28 '18 at 13:52









      Oliver GOliver G

      1,4471532




      1,4471532






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$



          Similarly for the third term.



          Hopefully you can see how to simplify the equations from here.



          Edit:



          For the third term,



          $$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$



          Hence combinining the last three terms, we have



          $$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:11








          • 1




            $begingroup$
            i have included more details in the answer.
            $endgroup$
            – Siong Thye Goh
            Dec 28 '18 at 14:14










          • $begingroup$
            Ah, I see. I factored incorrectly in the third term.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:19











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054904%2fhow-is-sum-j-1nx-j-bar-xx-j-bar-x-sum-x-jx-j-n-bar-x-bar%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2












          $begingroup$

          Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$



          Similarly for the third term.



          Hopefully you can see how to simplify the equations from here.



          Edit:



          For the third term,



          $$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$



          Hence combinining the last three terms, we have



          $$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:11








          • 1




            $begingroup$
            i have included more details in the answer.
            $endgroup$
            – Siong Thye Goh
            Dec 28 '18 at 14:14










          • $begingroup$
            Ah, I see. I factored incorrectly in the third term.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:19
















          2












          $begingroup$

          Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$



          Similarly for the third term.



          Hopefully you can see how to simplify the equations from here.



          Edit:



          For the third term,



          $$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$



          Hence combinining the last three terms, we have



          $$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:11








          • 1




            $begingroup$
            i have included more details in the answer.
            $endgroup$
            – Siong Thye Goh
            Dec 28 '18 at 14:14










          • $begingroup$
            Ah, I see. I factored incorrectly in the third term.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:19














          2












          2








          2





          $begingroup$

          Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$



          Similarly for the third term.



          Hopefully you can see how to simplify the equations from here.



          Edit:



          For the third term,



          $$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$



          Hence combinining the last three terms, we have



          $$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$






          share|cite|improve this answer











          $endgroup$



          Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$



          Similarly for the third term.



          Hopefully you can see how to simplify the equations from here.



          Edit:



          For the third term,



          $$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$



          Hence combinining the last three terms, we have



          $$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 28 '18 at 14:14

























          answered Dec 28 '18 at 13:55









          Siong Thye GohSiong Thye Goh

          101k1466118




          101k1466118












          • $begingroup$
            Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:11








          • 1




            $begingroup$
            i have included more details in the answer.
            $endgroup$
            – Siong Thye Goh
            Dec 28 '18 at 14:14










          • $begingroup$
            Ah, I see. I factored incorrectly in the third term.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:19


















          • $begingroup$
            Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:11








          • 1




            $begingroup$
            i have included more details in the answer.
            $endgroup$
            – Siong Thye Goh
            Dec 28 '18 at 14:14










          • $begingroup$
            Ah, I see. I factored incorrectly in the third term.
            $endgroup$
            – Oliver G
            Dec 28 '18 at 14:19
















          $begingroup$
          Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
          $endgroup$
          – Oliver G
          Dec 28 '18 at 14:11






          $begingroup$
          Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
          $endgroup$
          – Oliver G
          Dec 28 '18 at 14:11






          1




          1




          $begingroup$
          i have included more details in the answer.
          $endgroup$
          – Siong Thye Goh
          Dec 28 '18 at 14:14




          $begingroup$
          i have included more details in the answer.
          $endgroup$
          – Siong Thye Goh
          Dec 28 '18 at 14:14












          $begingroup$
          Ah, I see. I factored incorrectly in the third term.
          $endgroup$
          – Oliver G
          Dec 28 '18 at 14:19




          $begingroup$
          Ah, I see. I factored incorrectly in the third term.
          $endgroup$
          – Oliver G
          Dec 28 '18 at 14:19


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054904%2fhow-is-sum-j-1nx-j-bar-xx-j-bar-x-sum-x-jx-j-n-bar-x-bar%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna