How is $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n bar X bar X'$?
$begingroup$
Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
and $bar X = sum X_j / n $
Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
bar X bar X'$
I see that
$sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?
linear-algebra probability
$endgroup$
add a comment |
$begingroup$
Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
and $bar X = sum X_j / n $
Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
bar X bar X'$
I see that
$sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?
linear-algebra probability
$endgroup$
add a comment |
$begingroup$
Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
and $bar X = sum X_j / n $
Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
bar X bar X'$
I see that
$sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?
linear-algebra probability
$endgroup$
Let $X_j$ be a column vectors of the same shape, $(text{_})'$ indicates transposition,
and $bar X = sum X_j / n $
Prove $sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum X_jX_j' - n
bar X bar X'$
I see that
$sum_{j=1}^n(X_j - bar X)(X_j - bar X)' = sum(X_j - bar X) X_j' + (sum(X_j-bar X))(-bar X)' $ but from here I get $sum X_jX_j' - sum bar X X_j' - sum X_j bar X ' + nbar X bar X '$. Is there something I'm missing?
linear-algebra probability
linear-algebra probability
asked Dec 28 '18 at 13:52
Oliver GOliver G
1,4471532
1,4471532
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$
Similarly for the third term.
Hopefully you can see how to simplify the equations from here.
Edit:
For the third term,
$$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$
Hence combinining the last three terms, we have
$$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$
$endgroup$
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
1
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054904%2fhow-is-sum-j-1nx-j-bar-xx-j-bar-x-sum-x-jx-j-n-bar-x-bar%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$
Similarly for the third term.
Hopefully you can see how to simplify the equations from here.
Edit:
For the third term,
$$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$
Hence combinining the last three terms, we have
$$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$
$endgroup$
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
1
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
add a comment |
$begingroup$
Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$
Similarly for the third term.
Hopefully you can see how to simplify the equations from here.
Edit:
For the third term,
$$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$
Hence combinining the last three terms, we have
$$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$
$endgroup$
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
1
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
add a comment |
$begingroup$
Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$
Similarly for the third term.
Hopefully you can see how to simplify the equations from here.
Edit:
For the third term,
$$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$
Hence combinining the last three terms, we have
$$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$
$endgroup$
Notice that for the second term $$sum_j bar{X}X_j'=bar{X} sum_j X_j'=bar{X} (nbar{X})'=nbar{X}bar{X}'.$$
Similarly for the third term.
Hopefully you can see how to simplify the equations from here.
Edit:
For the third term,
$$sum_j X_jbar{X}'= left(sum_j X_jright)bar{X}'= (nbar{X})bar{X}'=nbar{X}bar{X}'.$$
Hence combinining the last three terms, we have
$$-nbar{X}bar{X}'-nbar{X}bar{X}'+nbar{X}bar{X}'=-nbar{X}bar{X}'$$
edited Dec 28 '18 at 14:14
answered Dec 28 '18 at 13:55
Siong Thye GohSiong Thye Goh
101k1466118
101k1466118
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
1
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
add a comment |
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
1
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
$begingroup$
Then for the third term I get $n bar X' bar X$ and the expression is: $sum X_j X_j' -n bar X bar X' - n bar X' bar X + n bar X bar X'$ which reduces to $sum X_j X_j ' - n bar X ' bar X. $ But the last expression isn't equal to $n bar X bar X '$.
$endgroup$
– Oliver G
Dec 28 '18 at 14:11
1
1
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
i have included more details in the answer.
$endgroup$
– Siong Thye Goh
Dec 28 '18 at 14:14
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
$begingroup$
Ah, I see. I factored incorrectly in the third term.
$endgroup$
– Oliver G
Dec 28 '18 at 14:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054904%2fhow-is-sum-j-1nx-j-bar-xx-j-bar-x-sum-x-jx-j-n-bar-x-bar%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown