How do we prove or visualize $[x+(x-2)]=[2+(x-2)]$ the same way we prove or visualize $0+5mathbb Z = 5 +...
$begingroup$
Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.
$[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).
Here is what I tried:
Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that
$$x+x(x-2) = 2+q(x-2)$$
And it is $q(x)=x+1$ by solving for $q$.
In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.
Right to left is similar.
Is that correct?
- And then in general, to show
$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that
$$a+r(x-2)=b+q(x-2)$$
and we solve for $q$:
$$a+r(x-2)=b+q(x-2)$$
$$iff a-b+r(x-2)= q(x-2)$$
$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$
$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$
Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as
$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,
$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.
Is that correct?
abstract-algebra ring-theory modular-arithmetic ideals maximal-and-prime-ideals
$endgroup$
|
show 6 more comments
$begingroup$
Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.
$[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).
Here is what I tried:
Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that
$$x+x(x-2) = 2+q(x-2)$$
And it is $q(x)=x+1$ by solving for $q$.
In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.
Right to left is similar.
Is that correct?
- And then in general, to show
$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that
$$a+r(x-2)=b+q(x-2)$$
and we solve for $q$:
$$a+r(x-2)=b+q(x-2)$$
$$iff a-b+r(x-2)= q(x-2)$$
$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$
$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$
Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as
$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,
$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.
Is that correct?
abstract-algebra ring-theory modular-arithmetic ideals maximal-and-prime-ideals
$endgroup$
1
$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24
1
$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32
1
$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31
1
$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56
1
$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43
|
show 6 more comments
$begingroup$
Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.
$[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).
Here is what I tried:
Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that
$$x+x(x-2) = 2+q(x-2)$$
And it is $q(x)=x+1$ by solving for $q$.
In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.
Right to left is similar.
Is that correct?
- And then in general, to show
$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that
$$a+r(x-2)=b+q(x-2)$$
and we solve for $q$:
$$a+r(x-2)=b+q(x-2)$$
$$iff a-b+r(x-2)= q(x-2)$$
$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$
$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$
Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as
$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,
$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.
Is that correct?
abstract-algebra ring-theory modular-arithmetic ideals maximal-and-prime-ideals
$endgroup$
Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.
$[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).
Here is what I tried:
Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that
$$x+x(x-2) = 2+q(x-2)$$
And it is $q(x)=x+1$ by solving for $q$.
In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.
Right to left is similar.
Is that correct?
- And then in general, to show
$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that
$$a+r(x-2)=b+q(x-2)$$
and we solve for $q$:
$$a+r(x-2)=b+q(x-2)$$
$$iff a-b+r(x-2)= q(x-2)$$
$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$
$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$
Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as
$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,
$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.
Is that correct?
abstract-algebra ring-theory modular-arithmetic ideals maximal-and-prime-ideals
abstract-algebra ring-theory modular-arithmetic ideals maximal-and-prime-ideals
edited Dec 29 '18 at 12:39
asked Nov 20 '18 at 11:06
user198044
1
$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24
1
$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32
1
$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31
1
$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56
1
$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43
|
show 6 more comments
1
$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24
1
$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32
1
$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31
1
$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56
1
$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43
1
1
$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24
$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24
1
1
$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32
$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32
1
1
$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31
$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31
1
1
$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56
$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56
1
1
$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43
$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43
|
show 6 more comments
2 Answers
2
active
oldest
votes
$begingroup$
From the comments:
@астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer
@JackBauer As good as, I would say. – астон вілла олоф мэллбэрг
$endgroup$
add a comment |
$begingroup$
The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:
$$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$
or
$$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$
Similarly,
$$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006193%2fhow-do-we-prove-or-visualize-xx-2-2x-2-the-same-way-we-prove-or-visu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
From the comments:
@астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer
@JackBauer As good as, I would say. – астон вілла олоф мэллбэрг
$endgroup$
add a comment |
$begingroup$
From the comments:
@астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer
@JackBauer As good as, I would say. – астон вілла олоф мэллбэрг
$endgroup$
add a comment |
$begingroup$
From the comments:
@астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer
@JackBauer As good as, I would say. – астон вілла олоф мэллбэрг
$endgroup$
From the comments:
@астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer
@JackBauer As good as, I would say. – астон вілла олоф мэллбэрг
answered Nov 22 '18 at 2:40
user198044
add a comment |
add a comment |
$begingroup$
The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:
$$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$
or
$$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$
Similarly,
$$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$
$endgroup$
add a comment |
$begingroup$
The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:
$$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$
or
$$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$
Similarly,
$$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$
$endgroup$
add a comment |
$begingroup$
The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:
$$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$
or
$$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$
Similarly,
$$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$
$endgroup$
The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:
$$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$
or
$$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$
Similarly,
$$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$
answered Dec 29 '18 at 13:03
user198044
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006193%2fhow-do-we-prove-or-visualize-xx-2-2x-2-the-same-way-we-prove-or-visu%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24
1
$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32
1
$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31
1
$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56
1
$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43