How do we prove or visualize $[x+(x-2)]=[2+(x-2)]$ the same way we prove or visualize $0+5mathbb Z = 5 +...












1












$begingroup$


Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.





  1. $[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).


Here is what I tried:



Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that



$$x+x(x-2) = 2+q(x-2)$$



And it is $q(x)=x+1$ by solving for $q$.



In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.



Right to left is similar.



Is that correct?




  1. And then in general, to show


$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that



$$a+r(x-2)=b+q(x-2)$$



and we solve for $q$:



$$a+r(x-2)=b+q(x-2)$$



$$iff a-b+r(x-2)= q(x-2)$$



$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$



$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$



Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as



$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,



$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.



Is that correct?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
    $endgroup$
    – Tobias Kildetoft
    Nov 20 '18 at 11:24






  • 1




    $begingroup$
    @JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 11:32






  • 1




    $begingroup$
    @JackBauer As good as, I would say.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 15:31






  • 1




    $begingroup$
    You are welcome! Please answer this question yourself and accept it, so that it can be closed.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 1:56






  • 1




    $begingroup$
    @JackBauer No issues at all. +1 for question and answer.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 2:43
















1












$begingroup$


Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.





  1. $[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).


Here is what I tried:



Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that



$$x+x(x-2) = 2+q(x-2)$$



And it is $q(x)=x+1$ by solving for $q$.



In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.



Right to left is similar.



Is that correct?




  1. And then in general, to show


$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that



$$a+r(x-2)=b+q(x-2)$$



and we solve for $q$:



$$a+r(x-2)=b+q(x-2)$$



$$iff a-b+r(x-2)= q(x-2)$$



$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$



$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$



Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as



$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,



$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.



Is that correct?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
    $endgroup$
    – Tobias Kildetoft
    Nov 20 '18 at 11:24






  • 1




    $begingroup$
    @JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 11:32






  • 1




    $begingroup$
    @JackBauer As good as, I would say.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 15:31






  • 1




    $begingroup$
    You are welcome! Please answer this question yourself and accept it, so that it can be closed.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 1:56






  • 1




    $begingroup$
    @JackBauer No issues at all. +1 for question and answer.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 2:43














1












1








1





$begingroup$


Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.





  1. $[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).


Here is what I tried:



Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that



$$x+x(x-2) = 2+q(x-2)$$



And it is $q(x)=x+1$ by solving for $q$.



In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.



Right to left is similar.



Is that correct?




  1. And then in general, to show


$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that



$$a+r(x-2)=b+q(x-2)$$



and we solve for $q$:



$$a+r(x-2)=b+q(x-2)$$



$$iff a-b+r(x-2)= q(x-2)$$



$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$



$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$



Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as



$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,



$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.



Is that correct?










share|cite|improve this question











$endgroup$




Denote $langle x-2rangle$ as the principal ideal generated by $x-2$ in the polynomial ring $mathbb R[x]$.





  1. $[x+langle x-2rangle]$ and $[2+langle x-2rangle]$ are elements of the quotient ring $mathbb R[x]/langle x-2rangle$, which happens to be a field because $x-2$ is monic irreducible in $mathbb R[x]$ (and the Proposition here).


Here is what I tried:



Let us take an element in one side and show it is in the other side. One of the elements in $[x+langle x-2rangle]$ is $x+x(x-2)$. Now we must find $q in mathbb R[x]$ such that



$$x+x(x-2) = 2+q(x-2)$$



And it is $q(x)=x+1$ by solving for $q$.



In general for $x+r(x-2)$ and $r in mathbb R[x]$, $q=r+1$.



Right to left is similar.



Is that correct?




  1. And then in general, to show


$$[a+langle x-2rangle] = [b+langle x-2rangle]$$ for elements $overline a=overline b$ in $mathbb R[x]/langle x-2rangle$, to show an element on the left hand side is on the right hand side, we are given and $r$ and must find $q$ such that



$$a+r(x-2)=b+q(x-2)$$



and we solve for $q$:



$$a+r(x-2)=b+q(x-2)$$



$$iff a-b+r(x-2)= q(x-2)$$



$$iff c(x-2)+r(x-2)= q(x-2), c in mathbb R[x]$$



$$iff (c+r)(x-2)= q(x-2), c in mathbb R[x]$$



Therefore $q=c+r$ where $c$ exists as a polynomial with coefficients in $mathbb R$ by definition of "$overline a=overline b$ in $mathbb R[x]/langle x-2rangle$", which is that as



$overline a=overline b$ in $mathbb Z/langle n rangle$" means that $a-b=cn$ for some $c in mathbb Z$,



$overline a=overline b$ in $mathbb R[x]/langle p rangle$" means that $a-b=cp$ for some $c in mathbb R[x]$.



Is that correct?







abstract-algebra ring-theory modular-arithmetic ideals maximal-and-prime-ideals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 12:39

























asked Nov 20 '18 at 11:06







user198044















  • 1




    $begingroup$
    In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
    $endgroup$
    – Tobias Kildetoft
    Nov 20 '18 at 11:24






  • 1




    $begingroup$
    @JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 11:32






  • 1




    $begingroup$
    @JackBauer As good as, I would say.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 15:31






  • 1




    $begingroup$
    You are welcome! Please answer this question yourself and accept it, so that it can be closed.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 1:56






  • 1




    $begingroup$
    @JackBauer No issues at all. +1 for question and answer.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 2:43














  • 1




    $begingroup$
    In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
    $endgroup$
    – Tobias Kildetoft
    Nov 20 '18 at 11:24






  • 1




    $begingroup$
    @JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 11:32






  • 1




    $begingroup$
    @JackBauer As good as, I would say.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 20 '18 at 15:31






  • 1




    $begingroup$
    You are welcome! Please answer this question yourself and accept it, so that it can be closed.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 1:56






  • 1




    $begingroup$
    @JackBauer No issues at all. +1 for question and answer.
    $endgroup$
    – астон вілла олоф мэллбэрг
    Nov 22 '18 at 2:43








1




1




$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24




$begingroup$
In general, if $I$ is an ideal then $a + I = b + I$ iff $a-bin I$. That is often (such as here) a lot easier to work with.
$endgroup$
– Tobias Kildetoft
Nov 20 '18 at 11:24




1




1




$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32




$begingroup$
@JackBauer The quotient itself is defined as the set of equivalence classes under the relation $a-b in I$, so checking that two equivalence classes are the same is equivalent to checking if the two given representatives are related or not. For example, just because $x - (+2) = x-2 in langle x-2rangle$, it follows that $x + langle x-2rangle = 2 + langle x-2rangle$.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 11:32




1




1




$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31




$begingroup$
@JackBauer As good as, I would say.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 20 '18 at 15:31




1




1




$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56




$begingroup$
You are welcome! Please answer this question yourself and accept it, so that it can be closed.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 1:56




1




1




$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43




$begingroup$
@JackBauer No issues at all. +1 for question and answer.
$endgroup$
– астон вілла олоф мэллбэрг
Nov 22 '18 at 2:43










2 Answers
2






active

oldest

votes


















1












$begingroup$

From the comments:




@астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer



@JackBauer As good as, I would say. – астон вілла олоф мэллбэрг







share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:



    $$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$



    or



    $$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$



    Similarly,



    $$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006193%2fhow-do-we-prove-or-visualize-xx-2-2x-2-the-same-way-we-prove-or-visu%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown
























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      From the comments:




      @астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer



      @JackBauer As good as, I would say. – астон вілла олоф мэллбэрг







      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        From the comments:




        @астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer



        @JackBauer As good as, I would say. – астон вілла олоф мэллбэрг







        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          From the comments:




          @астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer



          @JackBauer As good as, I would say. – астон вілла олоф мэллбэрг







          share|cite|improve this answer









          $endgroup$



          From the comments:




          @астонвіллаолофмэллбэрг So what I did is correct but reinventing the wheel? – Jack Bauer



          @JackBauer As good as, I would say. – астон вілла олоф мэллбэрг








          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Nov 22 '18 at 2:40







          user198044






























              0












              $begingroup$

              The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:



              $$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$



              or



              $$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$



              Similarly,



              $$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:



                $$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$



                or



                $$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$



                Similarly,



                $$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:



                  $$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$



                  or



                  $$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$



                  Similarly,



                  $$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$






                  share|cite|improve this answer









                  $endgroup$



                  The analogy should be $5+5mathbb Z=0+5mathbb Z$ and $[x-2+langle x-2 rangle] = [0+langle x-2 rangle]$:



                  $$5+5mathbb Z = 5+{...,-5,0,5,...} = 0+{...,0,5,10,...}=0+5mathbb Z$$



                  or



                  $$5+5mathbb Z = 5+{5m} = 0+{5+5m}=0+{5(m+1)}=0+{5(n)}$$



                  Similarly,



                  $$x-2+langle x-2 rangle = x-2+{(x-2)(p)} = 0+{(x-2)(p+1)} = 0+{(x-2)(q)}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Dec 29 '18 at 13:03







                  user198044





































                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3006193%2fhow-do-we-prove-or-visualize-xx-2-2x-2-the-same-way-we-prove-or-visu%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna