inverse of polynomial as sum of two power series
$begingroup$
given polynomial $$g(x) =ax^2+bx+c$$
I try to find $g(x)^{-1}$ as a sum of two power series.
I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$
then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$
then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$
so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$
my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?
polynomials power-series inverse inverse-function
$endgroup$
add a comment |
$begingroup$
given polynomial $$g(x) =ax^2+bx+c$$
I try to find $g(x)^{-1}$ as a sum of two power series.
I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$
then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$
then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$
so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$
my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?
polynomials power-series inverse inverse-function
$endgroup$
$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04
$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
$begingroup$
given polynomial $$g(x) =ax^2+bx+c$$
I try to find $g(x)^{-1}$ as a sum of two power series.
I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$
then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$
then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$
so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$
my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?
polynomials power-series inverse inverse-function
$endgroup$
given polynomial $$g(x) =ax^2+bx+c$$
I try to find $g(x)^{-1}$ as a sum of two power series.
I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$
then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$
then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$
so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$
my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?
polynomials power-series inverse inverse-function
polynomials power-series inverse inverse-function
edited Dec 29 '18 at 13:18
MSm
asked Dec 29 '18 at 10:56
MSmMSm
35719
35719
$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04
$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04
$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55
$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04
$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04
$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55
$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$
As
$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$
If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$
Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real
Assumption: $alpha+beta,alphabeta$ are real
$endgroup$
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055735%2finverse-of-polynomial-as-sum-of-two-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$
As
$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$
If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$
Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real
Assumption: $alpha+beta,alphabeta$ are real
$endgroup$
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
$begingroup$
The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$
As
$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$
If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$
Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real
Assumption: $alpha+beta,alphabeta$ are real
$endgroup$
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
$begingroup$
The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$
As
$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$
If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$
Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real
Assumption: $alpha+beta,alphabeta$ are real
$endgroup$
The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$
As
$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$
If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$
Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real
Assumption: $alpha+beta,alphabeta$ are real
answered Dec 29 '18 at 11:11
lab bhattacharjeelab bhattacharjee
226k15157275
226k15157275
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055735%2finverse-of-polynomial-as-sum-of-two-power-series%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04
$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55