inverse of polynomial as sum of two power series












0












$begingroup$


given polynomial $$g(x) =ax^2+bx+c$$

I try to find $g(x)^{-1}$ as a sum of two power series.



I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$

then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$

then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$

so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$



my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are $alpha,beta$ real?
    $endgroup$
    – lab bhattacharjee
    Dec 29 '18 at 11:04












  • $begingroup$
    not necessarily
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55
















0












$begingroup$


given polynomial $$g(x) =ax^2+bx+c$$

I try to find $g(x)^{-1}$ as a sum of two power series.



I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$

then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$

then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$

so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$



my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Are $alpha,beta$ real?
    $endgroup$
    – lab bhattacharjee
    Dec 29 '18 at 11:04












  • $begingroup$
    not necessarily
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55














0












0








0





$begingroup$


given polynomial $$g(x) =ax^2+bx+c$$

I try to find $g(x)^{-1}$ as a sum of two power series.



I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$

then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$

then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$

so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$



my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?










share|cite|improve this question











$endgroup$




given polynomial $$g(x) =ax^2+bx+c$$

I try to find $g(x)^{-1}$ as a sum of two power series.



I wrote $g(x) = alphabeta(1-frac{x}{alpha})(1-frac{x}{alpha})$ when $ alpha,beta = frac{ - bpmsqrt{b^2 - 4ac}}{2a} in C$

then $$g(x)^{-1} = frac{1}{alphabeta} frac{1}{(1-frac{x}{alpha})(1-frac{x}{beta})} = frac{1}{alphabeta} left[frac{A}{(1-frac{x}{alpha})} + frac{B}{(1-frac{x}{beta})} right]$$

then I found $$A = frac{-beta}{alpha - beta} ,B = frac{alpha }{alpha - beta}$$

so I can get $$g(x)^{-1} = frac{1}{alphabeta}left[frac{-beta}{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{alpha }right)}^n + frac{alpha }{alpha - beta} sum_{n=0}^{n=infty} {left(frac{x}{beta}right)}^nright]$$



my question is, is there any way to assure that the each power series is Real or change it into sum of two Real power series?







polynomials power-series inverse inverse-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 29 '18 at 13:18







MSm

















asked Dec 29 '18 at 10:56









MSmMSm

35719




35719












  • $begingroup$
    Are $alpha,beta$ real?
    $endgroup$
    – lab bhattacharjee
    Dec 29 '18 at 11:04












  • $begingroup$
    not necessarily
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55


















  • $begingroup$
    Are $alpha,beta$ real?
    $endgroup$
    – lab bhattacharjee
    Dec 29 '18 at 11:04












  • $begingroup$
    not necessarily
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55
















$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04






$begingroup$
Are $alpha,beta$ real?
$endgroup$
– lab bhattacharjee
Dec 29 '18 at 11:04














$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55




$begingroup$
not necessarily
$endgroup$
– MSm
Dec 29 '18 at 12:55










1 Answer
1






active

oldest

votes


















2












$begingroup$

The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$



As



$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$



If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$



Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real



Assumption: $alpha+beta,alphabeta$ are real






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks for the answer. is it possible to show that each power series is Real?
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055735%2finverse-of-polynomial-as-sum-of-two-power-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$



As



$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$



If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$



Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real



Assumption: $alpha+beta,alphabeta$ are real






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks for the answer. is it possible to show that each power series is Real?
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55


















2












$begingroup$

The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$



As



$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$



If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$



Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real



Assumption: $alpha+beta,alphabeta$ are real






share|cite|improve this answer









$endgroup$













  • $begingroup$
    thanks for the answer. is it possible to show that each power series is Real?
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55
















2












2








2





$begingroup$

The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$



As



$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$



If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$



Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real



Assumption: $alpha+beta,alphabeta$ are real






share|cite|improve this answer









$endgroup$



The coefficient of $x^n$ will be $$dfrac1{alphabeta(alpha-beta)}left(dfracalpha{beta^n}-dfracbeta{alpha^n}right)=dfrac{alpha^{n+1}-beta^{n+1}}{(alphabeta)^{n+1}(alpha-beta)}$$



As



$$(alpha+beta)(alpha^n-beta^n)=alpha^{n+1}-beta^{n+1}+alphabeta(alpha^{n-1}-beta^{n-1})$$



If $f(m)=dfrac{alpha^m-beta^m}{alpha-beta},$ $$f(n+1)=(alpha+beta)f(n)-alphabeta f(n-1)$$



Use strong induction to establish that if $f(m)$ is real for $mle n,f(n+1)$ will be real



Assumption: $alpha+beta,alphabeta$ are real







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 29 '18 at 11:11









lab bhattacharjeelab bhattacharjee

226k15157275




226k15157275












  • $begingroup$
    thanks for the answer. is it possible to show that each power series is Real?
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55




















  • $begingroup$
    thanks for the answer. is it possible to show that each power series is Real?
    $endgroup$
    – MSm
    Dec 29 '18 at 12:55


















$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55






$begingroup$
thanks for the answer. is it possible to show that each power series is Real?
$endgroup$
– MSm
Dec 29 '18 at 12:55




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3055735%2finverse-of-polynomial-as-sum-of-two-power-series%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna