Bounded function of compact normal operator on Hilbert space is normal
$begingroup$
Let $H$ be a Hilbert space and consider a compact normal linear operator $A:H to H$. Moreover, let $f$ be a bounded function on the spectrum $sigma(A)$ of $A$ and consider the operator $f(A)$ in the sense of functional calculus.
I want to show that $f(A)$ is also a normal operator. I know that a bounded linear operator $B:H to H$ is normal if and only if
$$ ||Bx||=||B^star x|| quad forall x in H,$$
which might be useful in this context.
functional-analysis operator-theory spectral-theory functional-calculus
$endgroup$
add a comment |
$begingroup$
Let $H$ be a Hilbert space and consider a compact normal linear operator $A:H to H$. Moreover, let $f$ be a bounded function on the spectrum $sigma(A)$ of $A$ and consider the operator $f(A)$ in the sense of functional calculus.
I want to show that $f(A)$ is also a normal operator. I know that a bounded linear operator $B:H to H$ is normal if and only if
$$ ||Bx||=||B^star x|| quad forall x in H,$$
which might be useful in this context.
functional-analysis operator-theory spectral-theory functional-calculus
$endgroup$
add a comment |
$begingroup$
Let $H$ be a Hilbert space and consider a compact normal linear operator $A:H to H$. Moreover, let $f$ be a bounded function on the spectrum $sigma(A)$ of $A$ and consider the operator $f(A)$ in the sense of functional calculus.
I want to show that $f(A)$ is also a normal operator. I know that a bounded linear operator $B:H to H$ is normal if and only if
$$ ||Bx||=||B^star x|| quad forall x in H,$$
which might be useful in this context.
functional-analysis operator-theory spectral-theory functional-calculus
$endgroup$
Let $H$ be a Hilbert space and consider a compact normal linear operator $A:H to H$. Moreover, let $f$ be a bounded function on the spectrum $sigma(A)$ of $A$ and consider the operator $f(A)$ in the sense of functional calculus.
I want to show that $f(A)$ is also a normal operator. I know that a bounded linear operator $B:H to H$ is normal if and only if
$$ ||Bx||=||B^star x|| quad forall x in H,$$
which might be useful in this context.
functional-analysis operator-theory spectral-theory functional-calculus
functional-analysis operator-theory spectral-theory functional-calculus
asked Jan 1 at 18:03
DivergenceFormDivergenceForm
685
685
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
For a compact normal operator $Ane 0$, there are eigenvalues $lambda_n$ and orthogonal projections $P_n$ onto the corresponding eigenspaces $P_nmathcal{H}$ with eigenvalue $lambda_n$ such that
$$
A = sum_{n} lambda_n P_n, ;; I=sum_{n}P_n\
P_n P_m = 0,;; nne m, \
P_n^2 = P_n = P_n^*.
$$
Suppose $f$ is a bounded function on the spectrum of $A$.
Then $f(A)=sum_{n}f(lambda_n)P_n$ is normal because $f(A)^*=sum_n overline{f(lambda_n)}P_n$ commutes with $f(A)$. In fact,
$$
f(A)^*f(A)=sum_{n}|f(lambda_n)|^2P_n=sum_{n}|overline{f(lambda_n)}|^2P_n=f(A)f(A)^*.
$$
Alternatively,
begin{align}
|f(A)x|^2 &= |sum_n lambda_n P_n x|^2 \
& =sum_n |lambda_n|^2|P_nx|^2 \
& =sum_n |overline{lambda_n}|^2|P_nx|^2 = |f(A)^*x|^2
end{align}
$endgroup$
add a comment |
$begingroup$
The functional calculus is a $*$-homomorphism, and since the algebra $B(sigma(A))$ of bounded functions on $sigma(A)$ is commutative, we have
$$f(A)f^*(A)=(ff^*)(A)=(f^*f)(A)=f^*(A)f(A).$$
$endgroup$
add a comment |
$begingroup$
For any $f in B(sigma(A))$ we have $f(A) in C^*(A)$.
Since $f mapsto f(A)$ is a $*$-homomorphism, we also have $f(A)^* = overline{f}(A) in C^*(A)$.
Therefore $$f(A)f(A)^* = f(A)^*f(A)$$
since $ C^*(A)$ is a commutative $C^*$-algebra.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058707%2fbounded-function-of-compact-normal-operator-on-hilbert-space-is-normal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For a compact normal operator $Ane 0$, there are eigenvalues $lambda_n$ and orthogonal projections $P_n$ onto the corresponding eigenspaces $P_nmathcal{H}$ with eigenvalue $lambda_n$ such that
$$
A = sum_{n} lambda_n P_n, ;; I=sum_{n}P_n\
P_n P_m = 0,;; nne m, \
P_n^2 = P_n = P_n^*.
$$
Suppose $f$ is a bounded function on the spectrum of $A$.
Then $f(A)=sum_{n}f(lambda_n)P_n$ is normal because $f(A)^*=sum_n overline{f(lambda_n)}P_n$ commutes with $f(A)$. In fact,
$$
f(A)^*f(A)=sum_{n}|f(lambda_n)|^2P_n=sum_{n}|overline{f(lambda_n)}|^2P_n=f(A)f(A)^*.
$$
Alternatively,
begin{align}
|f(A)x|^2 &= |sum_n lambda_n P_n x|^2 \
& =sum_n |lambda_n|^2|P_nx|^2 \
& =sum_n |overline{lambda_n}|^2|P_nx|^2 = |f(A)^*x|^2
end{align}
$endgroup$
add a comment |
$begingroup$
For a compact normal operator $Ane 0$, there are eigenvalues $lambda_n$ and orthogonal projections $P_n$ onto the corresponding eigenspaces $P_nmathcal{H}$ with eigenvalue $lambda_n$ such that
$$
A = sum_{n} lambda_n P_n, ;; I=sum_{n}P_n\
P_n P_m = 0,;; nne m, \
P_n^2 = P_n = P_n^*.
$$
Suppose $f$ is a bounded function on the spectrum of $A$.
Then $f(A)=sum_{n}f(lambda_n)P_n$ is normal because $f(A)^*=sum_n overline{f(lambda_n)}P_n$ commutes with $f(A)$. In fact,
$$
f(A)^*f(A)=sum_{n}|f(lambda_n)|^2P_n=sum_{n}|overline{f(lambda_n)}|^2P_n=f(A)f(A)^*.
$$
Alternatively,
begin{align}
|f(A)x|^2 &= |sum_n lambda_n P_n x|^2 \
& =sum_n |lambda_n|^2|P_nx|^2 \
& =sum_n |overline{lambda_n}|^2|P_nx|^2 = |f(A)^*x|^2
end{align}
$endgroup$
add a comment |
$begingroup$
For a compact normal operator $Ane 0$, there are eigenvalues $lambda_n$ and orthogonal projections $P_n$ onto the corresponding eigenspaces $P_nmathcal{H}$ with eigenvalue $lambda_n$ such that
$$
A = sum_{n} lambda_n P_n, ;; I=sum_{n}P_n\
P_n P_m = 0,;; nne m, \
P_n^2 = P_n = P_n^*.
$$
Suppose $f$ is a bounded function on the spectrum of $A$.
Then $f(A)=sum_{n}f(lambda_n)P_n$ is normal because $f(A)^*=sum_n overline{f(lambda_n)}P_n$ commutes with $f(A)$. In fact,
$$
f(A)^*f(A)=sum_{n}|f(lambda_n)|^2P_n=sum_{n}|overline{f(lambda_n)}|^2P_n=f(A)f(A)^*.
$$
Alternatively,
begin{align}
|f(A)x|^2 &= |sum_n lambda_n P_n x|^2 \
& =sum_n |lambda_n|^2|P_nx|^2 \
& =sum_n |overline{lambda_n}|^2|P_nx|^2 = |f(A)^*x|^2
end{align}
$endgroup$
For a compact normal operator $Ane 0$, there are eigenvalues $lambda_n$ and orthogonal projections $P_n$ onto the corresponding eigenspaces $P_nmathcal{H}$ with eigenvalue $lambda_n$ such that
$$
A = sum_{n} lambda_n P_n, ;; I=sum_{n}P_n\
P_n P_m = 0,;; nne m, \
P_n^2 = P_n = P_n^*.
$$
Suppose $f$ is a bounded function on the spectrum of $A$.
Then $f(A)=sum_{n}f(lambda_n)P_n$ is normal because $f(A)^*=sum_n overline{f(lambda_n)}P_n$ commutes with $f(A)$. In fact,
$$
f(A)^*f(A)=sum_{n}|f(lambda_n)|^2P_n=sum_{n}|overline{f(lambda_n)}|^2P_n=f(A)f(A)^*.
$$
Alternatively,
begin{align}
|f(A)x|^2 &= |sum_n lambda_n P_n x|^2 \
& =sum_n |lambda_n|^2|P_nx|^2 \
& =sum_n |overline{lambda_n}|^2|P_nx|^2 = |f(A)^*x|^2
end{align}
edited Jan 1 at 21:08
answered Jan 1 at 20:57
DisintegratingByPartsDisintegratingByParts
59.5k42580
59.5k42580
add a comment |
add a comment |
$begingroup$
The functional calculus is a $*$-homomorphism, and since the algebra $B(sigma(A))$ of bounded functions on $sigma(A)$ is commutative, we have
$$f(A)f^*(A)=(ff^*)(A)=(f^*f)(A)=f^*(A)f(A).$$
$endgroup$
add a comment |
$begingroup$
The functional calculus is a $*$-homomorphism, and since the algebra $B(sigma(A))$ of bounded functions on $sigma(A)$ is commutative, we have
$$f(A)f^*(A)=(ff^*)(A)=(f^*f)(A)=f^*(A)f(A).$$
$endgroup$
add a comment |
$begingroup$
The functional calculus is a $*$-homomorphism, and since the algebra $B(sigma(A))$ of bounded functions on $sigma(A)$ is commutative, we have
$$f(A)f^*(A)=(ff^*)(A)=(f^*f)(A)=f^*(A)f(A).$$
$endgroup$
The functional calculus is a $*$-homomorphism, and since the algebra $B(sigma(A))$ of bounded functions on $sigma(A)$ is commutative, we have
$$f(A)f^*(A)=(ff^*)(A)=(f^*f)(A)=f^*(A)f(A).$$
answered Jan 1 at 20:44
AweyganAweygan
14.4k21442
14.4k21442
add a comment |
add a comment |
$begingroup$
For any $f in B(sigma(A))$ we have $f(A) in C^*(A)$.
Since $f mapsto f(A)$ is a $*$-homomorphism, we also have $f(A)^* = overline{f}(A) in C^*(A)$.
Therefore $$f(A)f(A)^* = f(A)^*f(A)$$
since $ C^*(A)$ is a commutative $C^*$-algebra.
$endgroup$
add a comment |
$begingroup$
For any $f in B(sigma(A))$ we have $f(A) in C^*(A)$.
Since $f mapsto f(A)$ is a $*$-homomorphism, we also have $f(A)^* = overline{f}(A) in C^*(A)$.
Therefore $$f(A)f(A)^* = f(A)^*f(A)$$
since $ C^*(A)$ is a commutative $C^*$-algebra.
$endgroup$
add a comment |
$begingroup$
For any $f in B(sigma(A))$ we have $f(A) in C^*(A)$.
Since $f mapsto f(A)$ is a $*$-homomorphism, we also have $f(A)^* = overline{f}(A) in C^*(A)$.
Therefore $$f(A)f(A)^* = f(A)^*f(A)$$
since $ C^*(A)$ is a commutative $C^*$-algebra.
$endgroup$
For any $f in B(sigma(A))$ we have $f(A) in C^*(A)$.
Since $f mapsto f(A)$ is a $*$-homomorphism, we also have $f(A)^* = overline{f}(A) in C^*(A)$.
Therefore $$f(A)f(A)^* = f(A)^*f(A)$$
since $ C^*(A)$ is a commutative $C^*$-algebra.
answered Jan 1 at 21:09
mechanodroidmechanodroid
28k62447
28k62447
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3058707%2fbounded-function-of-compact-normal-operator-on-hilbert-space-is-normal%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown