Measure for countable non-disjoint union (but arbitrary intersections are Null-Sets)
$begingroup$
I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:
$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$
but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:
$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$
but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?
measure-theory
$endgroup$
add a comment |
$begingroup$
I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:
$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$
but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:
$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$
but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?
measure-theory
$endgroup$
$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53
$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58
add a comment |
$begingroup$
I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:
$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$
but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:
$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$
but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?
measure-theory
$endgroup$
I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:
$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$
but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:
$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$
but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?
measure-theory
measure-theory
asked Jan 7 at 17:52
user7802048user7802048
382211
382211
$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53
$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58
add a comment |
$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53
$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58
$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53
$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53
$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58
$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065280%2fmeasure-for-countable-non-disjoint-union-but-arbitrary-intersections-are-null-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065280%2fmeasure-for-countable-non-disjoint-union-but-arbitrary-intersections-are-null-s%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53
$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58