Measure for countable non-disjoint union (but arbitrary intersections are Null-Sets)












0












$begingroup$


I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:



$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$



but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:



$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$



but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
    $endgroup$
    – Wojowu
    Jan 7 at 17:53










  • $begingroup$
    @Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
    $endgroup$
    – user7802048
    Jan 7 at 17:58


















0












$begingroup$


I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:



$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$



but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:



$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$



but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
    $endgroup$
    – Wojowu
    Jan 7 at 17:53










  • $begingroup$
    @Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
    $endgroup$
    – user7802048
    Jan 7 at 17:58
















0












0








0





$begingroup$


I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:



$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$



but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:



$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$



but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?










share|cite|improve this question









$endgroup$




I have a measure space $(X, xi, mu)$ and $(A_n)_{n in mathbb{N}} in xi^mathbb{N}$ with $mu(A_l ,cap,A_k) = 0$ for $l neq k$. I do want to show:



$$mu(bigcup_{n in mathbb{N}} A_n) = sum_{n in mathbb{N}}mu(A_n)$$



but seem to get stuck. I start by defining $B_n := A_n setminus bigcup_{m < n}A_m$ and get:



$$mu(bigcup_{n in mathbb{N}} A_n) = mu(dot{bigcup},B_n) = sum_{n in mathbb{N}}mu(B_n) = sum_{n in mathbb{N}}mu(A_n setminus bigcup_{m < n}A_m)$$



but fail to include the extra information $mu(A_l ,cap,A_k) = 0$ for $l neq k$ at this point. How do I proceed from here?







measure-theory






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 7 at 17:52









user7802048user7802048

382211




382211












  • $begingroup$
    Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
    $endgroup$
    – Wojowu
    Jan 7 at 17:53










  • $begingroup$
    @Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
    $endgroup$
    – user7802048
    Jan 7 at 17:58




















  • $begingroup$
    Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
    $endgroup$
    – Wojowu
    Jan 7 at 17:53










  • $begingroup$
    @Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
    $endgroup$
    – user7802048
    Jan 7 at 17:58


















$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53




$begingroup$
Hint: What is the difference between measures of $A_n$ and $A_nsetminusbigcup_{m<n}A_m$?
$endgroup$
– Wojowu
Jan 7 at 17:53












$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58






$begingroup$
@Wojowu $A_n = (A_n setminus cup_{m<n},A_m) ,dotcup cup_{m<n} ,(A_n cap A_m)$. This gets us $mu(A_n setminus cup_{m<n},A_m) = mu(A_n) + mu(cup_{m<n} ,(A_n cap A_m)) = mu(A_n)$?
$endgroup$
– user7802048
Jan 7 at 17:58












0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065280%2fmeasure-for-countable-non-disjoint-union-but-arbitrary-intersections-are-null-s%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065280%2fmeasure-for-countable-non-disjoint-union-but-arbitrary-intersections-are-null-s%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna