Proof $sum_{nge1} frac{n!}{x(x+1)cdotdotscdot(x+n-1)}$ ($x>0$) convergence/divergence.
$begingroup$
First I noticed that the series can be rewritten to $sum_{nge1}frac1{binom{x}{n}}$. Applying root test: $lim_{ntoinfty} left|frac{binom{x}{n+1}}{binom{x}{n}}right| = lim_{ntoinfty} left|frac{binom{x}{n} cdot frac{x-n}{n-1}}{binom{x}{n}}right| = 1 $. This test is inconclusive. I'm trying hard to find a series to compare to the given one, but I can't seem to find one. Any hints?
Thanks in advance!
calculus sequences-and-series
$endgroup$
add a comment |
$begingroup$
First I noticed that the series can be rewritten to $sum_{nge1}frac1{binom{x}{n}}$. Applying root test: $lim_{ntoinfty} left|frac{binom{x}{n+1}}{binom{x}{n}}right| = lim_{ntoinfty} left|frac{binom{x}{n} cdot frac{x-n}{n-1}}{binom{x}{n}}right| = 1 $. This test is inconclusive. I'm trying hard to find a series to compare to the given one, but I can't seem to find one. Any hints?
Thanks in advance!
calculus sequences-and-series
$endgroup$
add a comment |
$begingroup$
First I noticed that the series can be rewritten to $sum_{nge1}frac1{binom{x}{n}}$. Applying root test: $lim_{ntoinfty} left|frac{binom{x}{n+1}}{binom{x}{n}}right| = lim_{ntoinfty} left|frac{binom{x}{n} cdot frac{x-n}{n-1}}{binom{x}{n}}right| = 1 $. This test is inconclusive. I'm trying hard to find a series to compare to the given one, but I can't seem to find one. Any hints?
Thanks in advance!
calculus sequences-and-series
$endgroup$
First I noticed that the series can be rewritten to $sum_{nge1}frac1{binom{x}{n}}$. Applying root test: $lim_{ntoinfty} left|frac{binom{x}{n+1}}{binom{x}{n}}right| = lim_{ntoinfty} left|frac{binom{x}{n} cdot frac{x-n}{n-1}}{binom{x}{n}}right| = 1 $. This test is inconclusive. I'm trying hard to find a series to compare to the given one, but I can't seem to find one. Any hints?
Thanks in advance!
calculus sequences-and-series
calculus sequences-and-series
asked Jan 7 at 18:29
ZacharyZachary
1939
1939
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It is easy enough to show for integers, but we can rewrite in terms of Gamma functions instead so that we can use related asymptotics
$$
frac{n!}{x(x+1)dotsb(x+n-1)}
= frac{Gamma(n+1)}{Gamma(x+n),/,Gamma(x)}
= frac{Gamma(x)}{n^{x-1}} frac{Gamma(n)cdot n^x}{Gamma(n+x)}
$$
Here:
Another useful limit for asymptotic approximations is:
$$lim_{nto infty} frac{Gamma(n+alpha)}{Gamma(n)n^{alpha}},quad alphainmathbb{C}$$
hence
$$ frac{n!}{x(x+1)dotsb(x+n-1)} / frac{1}{n^{x-1}} to Gamma(x) > 0,quad text{for $x > 0$}$$
The limit comparison test then says that the series converges or diverges with $sum_{n=1}^infty frac{1}{n^{x-1}}$, a "$p$-series", that converges if and only if $x>2$.
$endgroup$
add a comment |
$begingroup$
Let $u_n$ be the $n$-th term in the series. Then $R_n=frac{u_{n+1}}{u_n}=frac{n+1}{x+n}$.
So we see that the series diverges if $x leq 1$ because the sequence is nonzero and nondecreasing.
Now we assume $x=1+y, y > 0$.
Then $R_n=1-frac{y}{n}frac{1}{1+x/n}= 1-frac{y}{n} + Oleft(frac{1}{n^2}right)$.
Thus $ln(u_{n+1})-ln(u_n)=ln(R_n)=-yn^{-1}+O(n^{-2})$.
As a consequence, $ln(u_n)$ goes to $-infty$ and is equal to $-yln(n)+z+o(1)$ for some constant $z$.
Thus $u_n sim e^zn^{-y}$, hence the series converges iff $y > 1$ ie $x >2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065313%2fproof-sum-n-ge1-fracnxx1-cdot-dots-cdotxn-1-x0-convergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It is easy enough to show for integers, but we can rewrite in terms of Gamma functions instead so that we can use related asymptotics
$$
frac{n!}{x(x+1)dotsb(x+n-1)}
= frac{Gamma(n+1)}{Gamma(x+n),/,Gamma(x)}
= frac{Gamma(x)}{n^{x-1}} frac{Gamma(n)cdot n^x}{Gamma(n+x)}
$$
Here:
Another useful limit for asymptotic approximations is:
$$lim_{nto infty} frac{Gamma(n+alpha)}{Gamma(n)n^{alpha}},quad alphainmathbb{C}$$
hence
$$ frac{n!}{x(x+1)dotsb(x+n-1)} / frac{1}{n^{x-1}} to Gamma(x) > 0,quad text{for $x > 0$}$$
The limit comparison test then says that the series converges or diverges with $sum_{n=1}^infty frac{1}{n^{x-1}}$, a "$p$-series", that converges if and only if $x>2$.
$endgroup$
add a comment |
$begingroup$
It is easy enough to show for integers, but we can rewrite in terms of Gamma functions instead so that we can use related asymptotics
$$
frac{n!}{x(x+1)dotsb(x+n-1)}
= frac{Gamma(n+1)}{Gamma(x+n),/,Gamma(x)}
= frac{Gamma(x)}{n^{x-1}} frac{Gamma(n)cdot n^x}{Gamma(n+x)}
$$
Here:
Another useful limit for asymptotic approximations is:
$$lim_{nto infty} frac{Gamma(n+alpha)}{Gamma(n)n^{alpha}},quad alphainmathbb{C}$$
hence
$$ frac{n!}{x(x+1)dotsb(x+n-1)} / frac{1}{n^{x-1}} to Gamma(x) > 0,quad text{for $x > 0$}$$
The limit comparison test then says that the series converges or diverges with $sum_{n=1}^infty frac{1}{n^{x-1}}$, a "$p$-series", that converges if and only if $x>2$.
$endgroup$
add a comment |
$begingroup$
It is easy enough to show for integers, but we can rewrite in terms of Gamma functions instead so that we can use related asymptotics
$$
frac{n!}{x(x+1)dotsb(x+n-1)}
= frac{Gamma(n+1)}{Gamma(x+n),/,Gamma(x)}
= frac{Gamma(x)}{n^{x-1}} frac{Gamma(n)cdot n^x}{Gamma(n+x)}
$$
Here:
Another useful limit for asymptotic approximations is:
$$lim_{nto infty} frac{Gamma(n+alpha)}{Gamma(n)n^{alpha}},quad alphainmathbb{C}$$
hence
$$ frac{n!}{x(x+1)dotsb(x+n-1)} / frac{1}{n^{x-1}} to Gamma(x) > 0,quad text{for $x > 0$}$$
The limit comparison test then says that the series converges or diverges with $sum_{n=1}^infty frac{1}{n^{x-1}}$, a "$p$-series", that converges if and only if $x>2$.
$endgroup$
It is easy enough to show for integers, but we can rewrite in terms of Gamma functions instead so that we can use related asymptotics
$$
frac{n!}{x(x+1)dotsb(x+n-1)}
= frac{Gamma(n+1)}{Gamma(x+n),/,Gamma(x)}
= frac{Gamma(x)}{n^{x-1}} frac{Gamma(n)cdot n^x}{Gamma(n+x)}
$$
Here:
Another useful limit for asymptotic approximations is:
$$lim_{nto infty} frac{Gamma(n+alpha)}{Gamma(n)n^{alpha}},quad alphainmathbb{C}$$
hence
$$ frac{n!}{x(x+1)dotsb(x+n-1)} / frac{1}{n^{x-1}} to Gamma(x) > 0,quad text{for $x > 0$}$$
The limit comparison test then says that the series converges or diverges with $sum_{n=1}^infty frac{1}{n^{x-1}}$, a "$p$-series", that converges if and only if $x>2$.
answered Jan 7 at 21:18
adfriedmanadfriedman
3,156169
3,156169
add a comment |
add a comment |
$begingroup$
Let $u_n$ be the $n$-th term in the series. Then $R_n=frac{u_{n+1}}{u_n}=frac{n+1}{x+n}$.
So we see that the series diverges if $x leq 1$ because the sequence is nonzero and nondecreasing.
Now we assume $x=1+y, y > 0$.
Then $R_n=1-frac{y}{n}frac{1}{1+x/n}= 1-frac{y}{n} + Oleft(frac{1}{n^2}right)$.
Thus $ln(u_{n+1})-ln(u_n)=ln(R_n)=-yn^{-1}+O(n^{-2})$.
As a consequence, $ln(u_n)$ goes to $-infty$ and is equal to $-yln(n)+z+o(1)$ for some constant $z$.
Thus $u_n sim e^zn^{-y}$, hence the series converges iff $y > 1$ ie $x >2$.
$endgroup$
add a comment |
$begingroup$
Let $u_n$ be the $n$-th term in the series. Then $R_n=frac{u_{n+1}}{u_n}=frac{n+1}{x+n}$.
So we see that the series diverges if $x leq 1$ because the sequence is nonzero and nondecreasing.
Now we assume $x=1+y, y > 0$.
Then $R_n=1-frac{y}{n}frac{1}{1+x/n}= 1-frac{y}{n} + Oleft(frac{1}{n^2}right)$.
Thus $ln(u_{n+1})-ln(u_n)=ln(R_n)=-yn^{-1}+O(n^{-2})$.
As a consequence, $ln(u_n)$ goes to $-infty$ and is equal to $-yln(n)+z+o(1)$ for some constant $z$.
Thus $u_n sim e^zn^{-y}$, hence the series converges iff $y > 1$ ie $x >2$.
$endgroup$
add a comment |
$begingroup$
Let $u_n$ be the $n$-th term in the series. Then $R_n=frac{u_{n+1}}{u_n}=frac{n+1}{x+n}$.
So we see that the series diverges if $x leq 1$ because the sequence is nonzero and nondecreasing.
Now we assume $x=1+y, y > 0$.
Then $R_n=1-frac{y}{n}frac{1}{1+x/n}= 1-frac{y}{n} + Oleft(frac{1}{n^2}right)$.
Thus $ln(u_{n+1})-ln(u_n)=ln(R_n)=-yn^{-1}+O(n^{-2})$.
As a consequence, $ln(u_n)$ goes to $-infty$ and is equal to $-yln(n)+z+o(1)$ for some constant $z$.
Thus $u_n sim e^zn^{-y}$, hence the series converges iff $y > 1$ ie $x >2$.
$endgroup$
Let $u_n$ be the $n$-th term in the series. Then $R_n=frac{u_{n+1}}{u_n}=frac{n+1}{x+n}$.
So we see that the series diverges if $x leq 1$ because the sequence is nonzero and nondecreasing.
Now we assume $x=1+y, y > 0$.
Then $R_n=1-frac{y}{n}frac{1}{1+x/n}= 1-frac{y}{n} + Oleft(frac{1}{n^2}right)$.
Thus $ln(u_{n+1})-ln(u_n)=ln(R_n)=-yn^{-1}+O(n^{-2})$.
As a consequence, $ln(u_n)$ goes to $-infty$ and is equal to $-yln(n)+z+o(1)$ for some constant $z$.
Thus $u_n sim e^zn^{-y}$, hence the series converges iff $y > 1$ ie $x >2$.
answered Jan 7 at 18:38
MindlackMindlack
4,910211
4,910211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065313%2fproof-sum-n-ge1-fracnxx1-cdot-dots-cdotxn-1-x0-convergence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown