Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$ $g$ periodic on $mathbb{R}$
$begingroup$
Let $g$ be a continuous periodic function on $mathbb{R}$ with $g(x + 1) = g(x)$. Assume that $int_{0}^{1}g(x)dx = 0$.
(a) Let $f$ be continuous on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
(b) Let $f$ be Lebesgue integrable on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
My attempt:
(a)
For part (a) I dont know how to proceed.
I have a solution that uses the following:
$$lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = int_{0}^{1}f(x)int_{0}^{1}g(x)dx$$ and by hypothesis the results follow. There is another approach ?
(b) (This needs verification)
$g(x)$ is continuous and periodic on $mathbb{R}$, then $exists B > 0$ such that $|g(x)|< B$.
$f$ Lebesgue integrable on $[0,1]$ $rightarrow forall epsilon > 0, exists h$ step function such that $int_{0}^{1}|f - h| < frac{epsilon}{B}, forall x in [0,1]$
then
$$| int_{0}^{1}f(x)g(nx)dx | leq int_{0}^{1}|f(x) - h(x)| |g(nx)|dx + |int_{0}^{1} h(x)g(nx)dx| leq epsilon + |int_{0}^{1} h(x)g(nx)dx|$$
We must show that $lim_{nto infty}int_{0}^{1} h(x)g(nx)dx|$
Since $h$ is a step function,
$$h(x) = sum_{i=1}^{k}lambda_ichi_{O_i}(x), mbox{ where } bigcup_{i=1}^{k}O_i = [0,1]$$
Hence, for $M = max_{i = 1,...,k}|lambda_i|$
$$int_{0}^{1} h(x)g(nx)dx = sum_{i=1}^{k}lambda_iint_{O_i}g(nx)dx$$
$$leq Msum_{i=1}^{k}int_{O_i}g(nx)dx$$
$$= Mint_{0}^{1}g(nx)dx| = frac{M}{n}int_{0}^{n}g(x)dx = Mint_{0}^{n}g(x) = 0$$
Then
$$|int_{0}^{1}f(x)g(nx)dx| < epsilon$$
integration measure-theory lebesgue-integral periodic-functions
$endgroup$
add a comment |
$begingroup$
Let $g$ be a continuous periodic function on $mathbb{R}$ with $g(x + 1) = g(x)$. Assume that $int_{0}^{1}g(x)dx = 0$.
(a) Let $f$ be continuous on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
(b) Let $f$ be Lebesgue integrable on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
My attempt:
(a)
For part (a) I dont know how to proceed.
I have a solution that uses the following:
$$lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = int_{0}^{1}f(x)int_{0}^{1}g(x)dx$$ and by hypothesis the results follow. There is another approach ?
(b) (This needs verification)
$g(x)$ is continuous and periodic on $mathbb{R}$, then $exists B > 0$ such that $|g(x)|< B$.
$f$ Lebesgue integrable on $[0,1]$ $rightarrow forall epsilon > 0, exists h$ step function such that $int_{0}^{1}|f - h| < frac{epsilon}{B}, forall x in [0,1]$
then
$$| int_{0}^{1}f(x)g(nx)dx | leq int_{0}^{1}|f(x) - h(x)| |g(nx)|dx + |int_{0}^{1} h(x)g(nx)dx| leq epsilon + |int_{0}^{1} h(x)g(nx)dx|$$
We must show that $lim_{nto infty}int_{0}^{1} h(x)g(nx)dx|$
Since $h$ is a step function,
$$h(x) = sum_{i=1}^{k}lambda_ichi_{O_i}(x), mbox{ where } bigcup_{i=1}^{k}O_i = [0,1]$$
Hence, for $M = max_{i = 1,...,k}|lambda_i|$
$$int_{0}^{1} h(x)g(nx)dx = sum_{i=1}^{k}lambda_iint_{O_i}g(nx)dx$$
$$leq Msum_{i=1}^{k}int_{O_i}g(nx)dx$$
$$= Mint_{0}^{1}g(nx)dx| = frac{M}{n}int_{0}^{n}g(x)dx = Mint_{0}^{n}g(x) = 0$$
Then
$$|int_{0}^{1}f(x)g(nx)dx| < epsilon$$
integration measure-theory lebesgue-integral periodic-functions
$endgroup$
2
$begingroup$
For $(b)$, you can approximate $f$ by continuous $h$ and use the result of $(a)$.
$endgroup$
– Song
Jan 7 at 17:26
add a comment |
$begingroup$
Let $g$ be a continuous periodic function on $mathbb{R}$ with $g(x + 1) = g(x)$. Assume that $int_{0}^{1}g(x)dx = 0$.
(a) Let $f$ be continuous on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
(b) Let $f$ be Lebesgue integrable on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
My attempt:
(a)
For part (a) I dont know how to proceed.
I have a solution that uses the following:
$$lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = int_{0}^{1}f(x)int_{0}^{1}g(x)dx$$ and by hypothesis the results follow. There is another approach ?
(b) (This needs verification)
$g(x)$ is continuous and periodic on $mathbb{R}$, then $exists B > 0$ such that $|g(x)|< B$.
$f$ Lebesgue integrable on $[0,1]$ $rightarrow forall epsilon > 0, exists h$ step function such that $int_{0}^{1}|f - h| < frac{epsilon}{B}, forall x in [0,1]$
then
$$| int_{0}^{1}f(x)g(nx)dx | leq int_{0}^{1}|f(x) - h(x)| |g(nx)|dx + |int_{0}^{1} h(x)g(nx)dx| leq epsilon + |int_{0}^{1} h(x)g(nx)dx|$$
We must show that $lim_{nto infty}int_{0}^{1} h(x)g(nx)dx|$
Since $h$ is a step function,
$$h(x) = sum_{i=1}^{k}lambda_ichi_{O_i}(x), mbox{ where } bigcup_{i=1}^{k}O_i = [0,1]$$
Hence, for $M = max_{i = 1,...,k}|lambda_i|$
$$int_{0}^{1} h(x)g(nx)dx = sum_{i=1}^{k}lambda_iint_{O_i}g(nx)dx$$
$$leq Msum_{i=1}^{k}int_{O_i}g(nx)dx$$
$$= Mint_{0}^{1}g(nx)dx| = frac{M}{n}int_{0}^{n}g(x)dx = Mint_{0}^{n}g(x) = 0$$
Then
$$|int_{0}^{1}f(x)g(nx)dx| < epsilon$$
integration measure-theory lebesgue-integral periodic-functions
$endgroup$
Let $g$ be a continuous periodic function on $mathbb{R}$ with $g(x + 1) = g(x)$. Assume that $int_{0}^{1}g(x)dx = 0$.
(a) Let $f$ be continuous on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
(b) Let $f$ be Lebesgue integrable on all $mathbb{R}$
Show that $lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = 0$
My attempt:
(a)
For part (a) I dont know how to proceed.
I have a solution that uses the following:
$$lim_{ntoinfty} int_{0}^{1}f(x)g(nx)dx = int_{0}^{1}f(x)int_{0}^{1}g(x)dx$$ and by hypothesis the results follow. There is another approach ?
(b) (This needs verification)
$g(x)$ is continuous and periodic on $mathbb{R}$, then $exists B > 0$ such that $|g(x)|< B$.
$f$ Lebesgue integrable on $[0,1]$ $rightarrow forall epsilon > 0, exists h$ step function such that $int_{0}^{1}|f - h| < frac{epsilon}{B}, forall x in [0,1]$
then
$$| int_{0}^{1}f(x)g(nx)dx | leq int_{0}^{1}|f(x) - h(x)| |g(nx)|dx + |int_{0}^{1} h(x)g(nx)dx| leq epsilon + |int_{0}^{1} h(x)g(nx)dx|$$
We must show that $lim_{nto infty}int_{0}^{1} h(x)g(nx)dx|$
Since $h$ is a step function,
$$h(x) = sum_{i=1}^{k}lambda_ichi_{O_i}(x), mbox{ where } bigcup_{i=1}^{k}O_i = [0,1]$$
Hence, for $M = max_{i = 1,...,k}|lambda_i|$
$$int_{0}^{1} h(x)g(nx)dx = sum_{i=1}^{k}lambda_iint_{O_i}g(nx)dx$$
$$leq Msum_{i=1}^{k}int_{O_i}g(nx)dx$$
$$= Mint_{0}^{1}g(nx)dx| = frac{M}{n}int_{0}^{n}g(x)dx = Mint_{0}^{n}g(x) = 0$$
Then
$$|int_{0}^{1}f(x)g(nx)dx| < epsilon$$
integration measure-theory lebesgue-integral periodic-functions
integration measure-theory lebesgue-integral periodic-functions
asked Jan 7 at 17:18
Richard ClareRichard Clare
1,086314
1,086314
2
$begingroup$
For $(b)$, you can approximate $f$ by continuous $h$ and use the result of $(a)$.
$endgroup$
– Song
Jan 7 at 17:26
add a comment |
2
$begingroup$
For $(b)$, you can approximate $f$ by continuous $h$ and use the result of $(a)$.
$endgroup$
– Song
Jan 7 at 17:26
2
2
$begingroup$
For $(b)$, you can approximate $f$ by continuous $h$ and use the result of $(a)$.
$endgroup$
– Song
Jan 7 at 17:26
$begingroup$
For $(b)$, you can approximate $f$ by continuous $h$ and use the result of $(a)$.
$endgroup$
– Song
Jan 7 at 17:26
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For part (a):
Let $I=int_{0}^{1}|g(x)|dx$. Let $epsilon>0$ be given. Note that
$f$ is uniformly continuous on $[0,1]$, so there exists $delta>0$
such that $|f(x)-f(y)|<frac{epsilon}{I+1}$ whenever $x,yin[0,1]$
with $|x-y|<delta$. Choose $Ninmathbb{N}$ such that $frac{1}{N}<delta$.
By considering the substitution $y=nx$, we may rewrite
begin{eqnarray*}
int_{0}^{1}f(x)g(nx)dx & = & frac{1}{n}int_{0}^{n}f(frac{y}{n})g(y)dy\
& = & frac{1}{n}sum_{k=1}^{n}int_{k-1}^{k}f(frac{y}{n})g(y)dy.
end{eqnarray*}
Let $ngeq N$ be arbitrary. Denote $f_{k}=f(frac{k}{n})$, for $k=1,2,ldots n$.
By periodicity of $g$, we have $int_{k-1}^{k}g(y)dy=int_{0}^{1}g(y)dy=0$.
Therefore
begin{eqnarray*}
& & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy|\
& leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\
& leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\
& = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\
& = & epsiloncdotfrac{I}{I+1}\
& leq & epsilon.
end{eqnarray*}
Now it is clear that
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & frac{1}{n}sum_{k=1}^{n}|int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& leq & frac{1}{n}sum_{k=1}^{n}epsilon\
& = & epsilon.
end{eqnarray*}
$endgroup$
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
add a comment |
$begingroup$
For (b): Since $g$ is continuous, there exists $M>0$ such that $|g(x)|leq M$
for all $xin[0,1]$. By periodicity of $g$, it follows that $|g(x)|leq M$
for all $xinmathbb{R}$. Recall that Lebesgue integrable function
can be approximated by integrable continuous function in $||cdot||_{1}$-norm.
More precisely, given $epsilon>0$, there exists a continuous function
$h:mathbb{R}rightarrowmathbb{R}$ such that $int_{0}^{1}|f-h|<epsilon$.
Let $epsilon>0$ be given. Choose continuous function $h:mathbb{R}rightarrowmathbb{R}$
such that $int_{0}^{1}|f-h|<frac{epsilon}{2M}.$ By part (a), there
exists $N$ such that $|int_{0}^{1}h(x)g(nx)dx|<frac{epsilon}{2}$
whenever $ngeq N$. Now let $ngeq N$ be aribitrary, then
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & |int_{0}^{1}[f(x)-h(x)]g(nx)dx|+|int_{0}^{1}h(x)g(nx)dx|\
& leq & Mint_{0}^{1}|f(x)-h(x)|dx+frac{epsilon}{2}\
& < & epsilon.
end{eqnarray*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065248%2fshow-that-lim-n-to-infty-int-01fxgnxdx-0-g-periodic-on-math%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For part (a):
Let $I=int_{0}^{1}|g(x)|dx$. Let $epsilon>0$ be given. Note that
$f$ is uniformly continuous on $[0,1]$, so there exists $delta>0$
such that $|f(x)-f(y)|<frac{epsilon}{I+1}$ whenever $x,yin[0,1]$
with $|x-y|<delta$. Choose $Ninmathbb{N}$ such that $frac{1}{N}<delta$.
By considering the substitution $y=nx$, we may rewrite
begin{eqnarray*}
int_{0}^{1}f(x)g(nx)dx & = & frac{1}{n}int_{0}^{n}f(frac{y}{n})g(y)dy\
& = & frac{1}{n}sum_{k=1}^{n}int_{k-1}^{k}f(frac{y}{n})g(y)dy.
end{eqnarray*}
Let $ngeq N$ be arbitrary. Denote $f_{k}=f(frac{k}{n})$, for $k=1,2,ldots n$.
By periodicity of $g$, we have $int_{k-1}^{k}g(y)dy=int_{0}^{1}g(y)dy=0$.
Therefore
begin{eqnarray*}
& & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy|\
& leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\
& leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\
& = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\
& = & epsiloncdotfrac{I}{I+1}\
& leq & epsilon.
end{eqnarray*}
Now it is clear that
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & frac{1}{n}sum_{k=1}^{n}|int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& leq & frac{1}{n}sum_{k=1}^{n}epsilon\
& = & epsilon.
end{eqnarray*}
$endgroup$
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
add a comment |
$begingroup$
For part (a):
Let $I=int_{0}^{1}|g(x)|dx$. Let $epsilon>0$ be given. Note that
$f$ is uniformly continuous on $[0,1]$, so there exists $delta>0$
such that $|f(x)-f(y)|<frac{epsilon}{I+1}$ whenever $x,yin[0,1]$
with $|x-y|<delta$. Choose $Ninmathbb{N}$ such that $frac{1}{N}<delta$.
By considering the substitution $y=nx$, we may rewrite
begin{eqnarray*}
int_{0}^{1}f(x)g(nx)dx & = & frac{1}{n}int_{0}^{n}f(frac{y}{n})g(y)dy\
& = & frac{1}{n}sum_{k=1}^{n}int_{k-1}^{k}f(frac{y}{n})g(y)dy.
end{eqnarray*}
Let $ngeq N$ be arbitrary. Denote $f_{k}=f(frac{k}{n})$, for $k=1,2,ldots n$.
By periodicity of $g$, we have $int_{k-1}^{k}g(y)dy=int_{0}^{1}g(y)dy=0$.
Therefore
begin{eqnarray*}
& & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy|\
& leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\
& leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\
& = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\
& = & epsiloncdotfrac{I}{I+1}\
& leq & epsilon.
end{eqnarray*}
Now it is clear that
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & frac{1}{n}sum_{k=1}^{n}|int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& leq & frac{1}{n}sum_{k=1}^{n}epsilon\
& = & epsilon.
end{eqnarray*}
$endgroup$
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
add a comment |
$begingroup$
For part (a):
Let $I=int_{0}^{1}|g(x)|dx$. Let $epsilon>0$ be given. Note that
$f$ is uniformly continuous on $[0,1]$, so there exists $delta>0$
such that $|f(x)-f(y)|<frac{epsilon}{I+1}$ whenever $x,yin[0,1]$
with $|x-y|<delta$. Choose $Ninmathbb{N}$ such that $frac{1}{N}<delta$.
By considering the substitution $y=nx$, we may rewrite
begin{eqnarray*}
int_{0}^{1}f(x)g(nx)dx & = & frac{1}{n}int_{0}^{n}f(frac{y}{n})g(y)dy\
& = & frac{1}{n}sum_{k=1}^{n}int_{k-1}^{k}f(frac{y}{n})g(y)dy.
end{eqnarray*}
Let $ngeq N$ be arbitrary. Denote $f_{k}=f(frac{k}{n})$, for $k=1,2,ldots n$.
By periodicity of $g$, we have $int_{k-1}^{k}g(y)dy=int_{0}^{1}g(y)dy=0$.
Therefore
begin{eqnarray*}
& & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy|\
& leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\
& leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\
& = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\
& = & epsiloncdotfrac{I}{I+1}\
& leq & epsilon.
end{eqnarray*}
Now it is clear that
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & frac{1}{n}sum_{k=1}^{n}|int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& leq & frac{1}{n}sum_{k=1}^{n}epsilon\
& = & epsilon.
end{eqnarray*}
$endgroup$
For part (a):
Let $I=int_{0}^{1}|g(x)|dx$. Let $epsilon>0$ be given. Note that
$f$ is uniformly continuous on $[0,1]$, so there exists $delta>0$
such that $|f(x)-f(y)|<frac{epsilon}{I+1}$ whenever $x,yin[0,1]$
with $|x-y|<delta$. Choose $Ninmathbb{N}$ such that $frac{1}{N}<delta$.
By considering the substitution $y=nx$, we may rewrite
begin{eqnarray*}
int_{0}^{1}f(x)g(nx)dx & = & frac{1}{n}int_{0}^{n}f(frac{y}{n})g(y)dy\
& = & frac{1}{n}sum_{k=1}^{n}int_{k-1}^{k}f(frac{y}{n})g(y)dy.
end{eqnarray*}
Let $ngeq N$ be arbitrary. Denote $f_{k}=f(frac{k}{n})$, for $k=1,2,ldots n$.
By periodicity of $g$, we have $int_{k-1}^{k}g(y)dy=int_{0}^{1}g(y)dy=0$.
Therefore
begin{eqnarray*}
& & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy|\
& leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\
& leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\
& = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\
& = & epsiloncdotfrac{I}{I+1}\
& leq & epsilon.
end{eqnarray*}
Now it is clear that
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & frac{1}{n}sum_{k=1}^{n}|int_{k-1}^{k}f(frac{y}{n})g(y)dy|\
& leq & frac{1}{n}sum_{k=1}^{n}epsilon\
& = & epsilon.
end{eqnarray*}
answered Jan 7 at 17:39
Danny Pak-Keung ChanDanny Pak-Keung Chan
2,55938
2,55938
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
add a comment |
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
how you obtain this:begin{eqnarray*} & & |int_{k-1}^{k}f(frac{y}{n})g(y)dy|\ & = & |int_{k-1}^{k}f(frac{y}{n})-f_{k}g(y)dy| *****\ & leq & int_{k-1}^{k}|f(frac{y}{n})-f_{k}||g(y)|dy\ & leq & int_{k-1}^{k}frac{epsilon}{I+1}|g(y)|dy\ & = & frac{epsilon}{I+1}int_{0}^{1}|g(y)|dy\ & = & epsiloncdotfrac{I}{I+1}\ & leq & epsilon. end{eqnarray*}
$endgroup$
– Richard Clare
Jan 7 at 18:05
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
$int_{k-1}^k f_k g(y) dy =0$
$endgroup$
– Danny Pak-Keung Chan
Jan 7 at 18:11
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
$begingroup$
Sure! Thanks!!!!!!!!
$endgroup$
– Richard Clare
Jan 7 at 18:14
add a comment |
$begingroup$
For (b): Since $g$ is continuous, there exists $M>0$ such that $|g(x)|leq M$
for all $xin[0,1]$. By periodicity of $g$, it follows that $|g(x)|leq M$
for all $xinmathbb{R}$. Recall that Lebesgue integrable function
can be approximated by integrable continuous function in $||cdot||_{1}$-norm.
More precisely, given $epsilon>0$, there exists a continuous function
$h:mathbb{R}rightarrowmathbb{R}$ such that $int_{0}^{1}|f-h|<epsilon$.
Let $epsilon>0$ be given. Choose continuous function $h:mathbb{R}rightarrowmathbb{R}$
such that $int_{0}^{1}|f-h|<frac{epsilon}{2M}.$ By part (a), there
exists $N$ such that $|int_{0}^{1}h(x)g(nx)dx|<frac{epsilon}{2}$
whenever $ngeq N$. Now let $ngeq N$ be aribitrary, then
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & |int_{0}^{1}[f(x)-h(x)]g(nx)dx|+|int_{0}^{1}h(x)g(nx)dx|\
& leq & Mint_{0}^{1}|f(x)-h(x)|dx+frac{epsilon}{2}\
& < & epsilon.
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
For (b): Since $g$ is continuous, there exists $M>0$ such that $|g(x)|leq M$
for all $xin[0,1]$. By periodicity of $g$, it follows that $|g(x)|leq M$
for all $xinmathbb{R}$. Recall that Lebesgue integrable function
can be approximated by integrable continuous function in $||cdot||_{1}$-norm.
More precisely, given $epsilon>0$, there exists a continuous function
$h:mathbb{R}rightarrowmathbb{R}$ such that $int_{0}^{1}|f-h|<epsilon$.
Let $epsilon>0$ be given. Choose continuous function $h:mathbb{R}rightarrowmathbb{R}$
such that $int_{0}^{1}|f-h|<frac{epsilon}{2M}.$ By part (a), there
exists $N$ such that $|int_{0}^{1}h(x)g(nx)dx|<frac{epsilon}{2}$
whenever $ngeq N$. Now let $ngeq N$ be aribitrary, then
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & |int_{0}^{1}[f(x)-h(x)]g(nx)dx|+|int_{0}^{1}h(x)g(nx)dx|\
& leq & Mint_{0}^{1}|f(x)-h(x)|dx+frac{epsilon}{2}\
& < & epsilon.
end{eqnarray*}
$endgroup$
add a comment |
$begingroup$
For (b): Since $g$ is continuous, there exists $M>0$ such that $|g(x)|leq M$
for all $xin[0,1]$. By periodicity of $g$, it follows that $|g(x)|leq M$
for all $xinmathbb{R}$. Recall that Lebesgue integrable function
can be approximated by integrable continuous function in $||cdot||_{1}$-norm.
More precisely, given $epsilon>0$, there exists a continuous function
$h:mathbb{R}rightarrowmathbb{R}$ such that $int_{0}^{1}|f-h|<epsilon$.
Let $epsilon>0$ be given. Choose continuous function $h:mathbb{R}rightarrowmathbb{R}$
such that $int_{0}^{1}|f-h|<frac{epsilon}{2M}.$ By part (a), there
exists $N$ such that $|int_{0}^{1}h(x)g(nx)dx|<frac{epsilon}{2}$
whenever $ngeq N$. Now let $ngeq N$ be aribitrary, then
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & |int_{0}^{1}[f(x)-h(x)]g(nx)dx|+|int_{0}^{1}h(x)g(nx)dx|\
& leq & Mint_{0}^{1}|f(x)-h(x)|dx+frac{epsilon}{2}\
& < & epsilon.
end{eqnarray*}
$endgroup$
For (b): Since $g$ is continuous, there exists $M>0$ such that $|g(x)|leq M$
for all $xin[0,1]$. By periodicity of $g$, it follows that $|g(x)|leq M$
for all $xinmathbb{R}$. Recall that Lebesgue integrable function
can be approximated by integrable continuous function in $||cdot||_{1}$-norm.
More precisely, given $epsilon>0$, there exists a continuous function
$h:mathbb{R}rightarrowmathbb{R}$ such that $int_{0}^{1}|f-h|<epsilon$.
Let $epsilon>0$ be given. Choose continuous function $h:mathbb{R}rightarrowmathbb{R}$
such that $int_{0}^{1}|f-h|<frac{epsilon}{2M}.$ By part (a), there
exists $N$ such that $|int_{0}^{1}h(x)g(nx)dx|<frac{epsilon}{2}$
whenever $ngeq N$. Now let $ngeq N$ be aribitrary, then
begin{eqnarray*}
& & |int_{0}^{1}f(x)g(nx)dx|\
& leq & |int_{0}^{1}[f(x)-h(x)]g(nx)dx|+|int_{0}^{1}h(x)g(nx)dx|\
& leq & Mint_{0}^{1}|f(x)-h(x)|dx+frac{epsilon}{2}\
& < & epsilon.
end{eqnarray*}
answered Jan 7 at 17:57
Danny Pak-Keung ChanDanny Pak-Keung Chan
2,55938
2,55938
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065248%2fshow-that-lim-n-to-infty-int-01fxgnxdx-0-g-periodic-on-math%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
For $(b)$, you can approximate $f$ by continuous $h$ and use the result of $(a)$.
$endgroup$
– Song
Jan 7 at 17:26