A question on binomial theorem












2












$begingroup$


If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/437523/…
    $endgroup$
    – lab bhattacharjee
    Jan 10 at 12:29
















2












$begingroup$


If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$










share|cite|improve this question











$endgroup$












  • $begingroup$
    math.stackexchange.com/questions/437523/…
    $endgroup$
    – lab bhattacharjee
    Jan 10 at 12:29














2












2








2





$begingroup$


If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$










share|cite|improve this question











$endgroup$




If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$







binomial-coefficients binomial-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 10 at 12:15









darij grinberg

11.5k33168




11.5k33168










asked Jan 10 at 12:14









Supriyo HalderSupriyo Halder

658113




658113












  • $begingroup$
    math.stackexchange.com/questions/437523/…
    $endgroup$
    – lab bhattacharjee
    Jan 10 at 12:29


















  • $begingroup$
    math.stackexchange.com/questions/437523/…
    $endgroup$
    – lab bhattacharjee
    Jan 10 at 12:29
















$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29




$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29










2 Answers
2






active

oldest

votes


















2












$begingroup$

Evaluate
$$int_0^1frac{1-(1-x)^n}xdx$$
in two different ways.




First way:
$$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
so
$$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
$$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$




Second way: Substituting $u=1-x$,
$$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$






share|cite|improve this answer











$endgroup$





















    1












    $begingroup$

    In other words, you are saying that
    begin{equation}
    sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
    end{equation}

    (because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).



    This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.



    (If you're looking for a hint: Induction on $n$.)






    share|cite|improve this answer









    $endgroup$














      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068565%2fa-question-on-binomial-theorem%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      Evaluate
      $$int_0^1frac{1-(1-x)^n}xdx$$
      in two different ways.




      First way:
      $$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
      so
      $$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
      $$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$




      Second way: Substituting $u=1-x$,
      $$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$






      share|cite|improve this answer











      $endgroup$


















        2












        $begingroup$

        Evaluate
        $$int_0^1frac{1-(1-x)^n}xdx$$
        in two different ways.




        First way:
        $$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
        so
        $$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
        $$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$




        Second way: Substituting $u=1-x$,
        $$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$






        share|cite|improve this answer











        $endgroup$
















          2












          2








          2





          $begingroup$

          Evaluate
          $$int_0^1frac{1-(1-x)^n}xdx$$
          in two different ways.




          First way:
          $$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
          so
          $$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
          $$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$




          Second way: Substituting $u=1-x$,
          $$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$






          share|cite|improve this answer











          $endgroup$



          Evaluate
          $$int_0^1frac{1-(1-x)^n}xdx$$
          in two different ways.




          First way:
          $$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
          so
          $$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
          $$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$




          Second way: Substituting $u=1-x$,
          $$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 10 at 23:28

























          answered Jan 10 at 13:11









          bofbof

          52.6k559121




          52.6k559121























              1












              $begingroup$

              In other words, you are saying that
              begin{equation}
              sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
              end{equation}

              (because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).



              This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.



              (If you're looking for a hint: Induction on $n$.)






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                In other words, you are saying that
                begin{equation}
                sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
                end{equation}

                (because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).



                This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.



                (If you're looking for a hint: Induction on $n$.)






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  In other words, you are saying that
                  begin{equation}
                  sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
                  end{equation}

                  (because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).



                  This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.



                  (If you're looking for a hint: Induction on $n$.)






                  share|cite|improve this answer









                  $endgroup$



                  In other words, you are saying that
                  begin{equation}
                  sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
                  end{equation}

                  (because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).



                  This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.



                  (If you're looking for a hint: Induction on $n$.)







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 10 at 12:18









                  darij grinbergdarij grinberg

                  11.5k33168




                  11.5k33168






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068565%2fa-question-on-binomial-theorem%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna