A question on binomial theorem
$begingroup$
If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$
binomial-coefficients binomial-theorem
$endgroup$
add a comment |
$begingroup$
If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$
binomial-coefficients binomial-theorem
$endgroup$
$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29
add a comment |
$begingroup$
If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$
binomial-coefficients binomial-theorem
$endgroup$
If $C_0$, $C_1$, $C_2$,...$C_n$ are the coefficients in the expansion of $(1+x)^n$, where $n$ is a positive integer, show that $$C_1- {C_2over 2}
+{C_3over 3}-...+{(-1)^{n-1} C_nover n}=1+ {1over 2}+ {1over 3}+...+{1over n}$$
binomial-coefficients binomial-theorem
binomial-coefficients binomial-theorem
edited Jan 10 at 12:15
darij grinberg
11.5k33168
11.5k33168
asked Jan 10 at 12:14
Supriyo HalderSupriyo Halder
658113
658113
$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29
add a comment |
$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29
$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29
$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Evaluate
$$int_0^1frac{1-(1-x)^n}xdx$$
in two different ways.
First way:
$$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
so
$$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
$$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$
Second way: Substituting $u=1-x$,
$$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$
$endgroup$
add a comment |
$begingroup$
In other words, you are saying that
begin{equation}
sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
end{equation}
(because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).
This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.
(If you're looking for a hint: Induction on $n$.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068565%2fa-question-on-binomial-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Evaluate
$$int_0^1frac{1-(1-x)^n}xdx$$
in two different ways.
First way:
$$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
so
$$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
$$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$
Second way: Substituting $u=1-x$,
$$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$
$endgroup$
add a comment |
$begingroup$
Evaluate
$$int_0^1frac{1-(1-x)^n}xdx$$
in two different ways.
First way:
$$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
so
$$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
$$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$
Second way: Substituting $u=1-x$,
$$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$
$endgroup$
add a comment |
$begingroup$
Evaluate
$$int_0^1frac{1-(1-x)^n}xdx$$
in two different ways.
First way:
$$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
so
$$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
$$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$
Second way: Substituting $u=1-x$,
$$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$
$endgroup$
Evaluate
$$int_0^1frac{1-(1-x)^n}xdx$$
in two different ways.
First way:
$$1-(1-x)^n=1-sum_{k=0}^n(-1)^kbinom nkx^k=sum_{k=1}^n(-1)^{k+1}binom nkx^k$$
so
$$int_0^1frac{1-(1-x)^n}xdx=sum_{k=1}^n(-1)^{k+1}binom nkint_0^1x^{k-1}dx=sum_{k=1}^n(-1)^{k+1}binom nkfrac1k$$
$$=frac{binom n1}1-frac{binom n2}2+frac{binom n3}3-cdots+(-1)^{n+1}frac{binom nn}n.$$
Second way: Substituting $u=1-x$,
$$int_0^1frac{1-(1-x)^n}xdx=int_0^1frac{1-u^n}{1-u}du=int_0^1(1+u+u^2+cdots+u^{n-1})du$$$$=frac11+frac12+frac13+cdots+frac1n.$$
edited Jan 10 at 23:28
answered Jan 10 at 13:11
bofbof
52.6k559121
52.6k559121
add a comment |
add a comment |
$begingroup$
In other words, you are saying that
begin{equation}
sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
end{equation}
(because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).
This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.
(If you're looking for a hint: Induction on $n$.)
$endgroup$
add a comment |
$begingroup$
In other words, you are saying that
begin{equation}
sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
end{equation}
(because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).
This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.
(If you're looking for a hint: Induction on $n$.)
$endgroup$
add a comment |
$begingroup$
In other words, you are saying that
begin{equation}
sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
end{equation}
(because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).
This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.
(If you're looking for a hint: Induction on $n$.)
$endgroup$
In other words, you are saying that
begin{equation}
sum_{k=1}^n dfrac{left(-1right)^{k-1}}{k} dbinom{n}{k} = dfrac{1}{1} + dfrac{1}{2} + cdots + dfrac{1}{n}
end{equation}
(because your $C_k$ are precisely the binomial coefficients $dbinom{n}{k}$).
This is a fairly known identity. The one place I remember seeing a proof (because I wrote it) is Exercise 3.19 in my Notes on the combinatorial fundamentals of algebra, version of 10th of January 2019. I suspect it's been on math.stackexchange a few times already.
(If you're looking for a hint: Induction on $n$.)
answered Jan 10 at 12:18
darij grinbergdarij grinberg
11.5k33168
11.5k33168
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068565%2fa-question-on-binomial-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
math.stackexchange.com/questions/437523/…
$endgroup$
– lab bhattacharjee
Jan 10 at 12:29