Minimum value of a linear program












2












$begingroup$


$x$ and $y$ are real numbers such that $ xge 0$ and $y ge 0$.



If $$ x + y le 5$$
$$ x + 2y ge 8$$



Then what is the minimum value of $5x+y$?



There is something wrong in my approach.
I write the first inequality as $$ 5 ge x + y$$
Adding with the second inequality yields, $$5 + x + 2y ge x + y + 8$$
Or $$ y ge 3$$ Thus $$ 9y ge 27$$
Multiplying the second inequality by $5$ we obtain $$ 5x + 10y ge 40$$ $$9y ge 27$$
Hence $5x+y ge 13$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can add the equations $5x+10y geq 40$ and $9y geq 27$ to conclude $5 x+19 y geq 67$ but you can't subtract them and conclude anything meaningful. For example, we have $5 geq 3$ and $5 geq 2$ but you can't subtract the second from the first and say $0 geq 1$.
    $endgroup$
    – Eric
    Jan 10 at 11:27










  • $begingroup$
    So, how do you find the minimum value?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:30










  • $begingroup$
    @Atiq Rahman I think, you are right. $13$ is a minimal value.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:35






  • 1




    $begingroup$
    I got $$5x+ygeq 4$$ for $x=0,y=4$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 10 at 11:43










  • $begingroup$
    $4$ is the minimum value @MichaelRozenberg . $(x,y)=(0,4)$ satisfies those inequalities.
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:43
















2












$begingroup$


$x$ and $y$ are real numbers such that $ xge 0$ and $y ge 0$.



If $$ x + y le 5$$
$$ x + 2y ge 8$$



Then what is the minimum value of $5x+y$?



There is something wrong in my approach.
I write the first inequality as $$ 5 ge x + y$$
Adding with the second inequality yields, $$5 + x + 2y ge x + y + 8$$
Or $$ y ge 3$$ Thus $$ 9y ge 27$$
Multiplying the second inequality by $5$ we obtain $$ 5x + 10y ge 40$$ $$9y ge 27$$
Hence $5x+y ge 13$










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    You can add the equations $5x+10y geq 40$ and $9y geq 27$ to conclude $5 x+19 y geq 67$ but you can't subtract them and conclude anything meaningful. For example, we have $5 geq 3$ and $5 geq 2$ but you can't subtract the second from the first and say $0 geq 1$.
    $endgroup$
    – Eric
    Jan 10 at 11:27










  • $begingroup$
    So, how do you find the minimum value?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:30










  • $begingroup$
    @Atiq Rahman I think, you are right. $13$ is a minimal value.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:35






  • 1




    $begingroup$
    I got $$5x+ygeq 4$$ for $x=0,y=4$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 10 at 11:43










  • $begingroup$
    $4$ is the minimum value @MichaelRozenberg . $(x,y)=(0,4)$ satisfies those inequalities.
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:43














2












2








2





$begingroup$


$x$ and $y$ are real numbers such that $ xge 0$ and $y ge 0$.



If $$ x + y le 5$$
$$ x + 2y ge 8$$



Then what is the minimum value of $5x+y$?



There is something wrong in my approach.
I write the first inequality as $$ 5 ge x + y$$
Adding with the second inequality yields, $$5 + x + 2y ge x + y + 8$$
Or $$ y ge 3$$ Thus $$ 9y ge 27$$
Multiplying the second inequality by $5$ we obtain $$ 5x + 10y ge 40$$ $$9y ge 27$$
Hence $5x+y ge 13$










share|cite|improve this question









$endgroup$




$x$ and $y$ are real numbers such that $ xge 0$ and $y ge 0$.



If $$ x + y le 5$$
$$ x + 2y ge 8$$



Then what is the minimum value of $5x+y$?



There is something wrong in my approach.
I write the first inequality as $$ 5 ge x + y$$
Adding with the second inequality yields, $$5 + x + 2y ge x + y + 8$$
Or $$ y ge 3$$ Thus $$ 9y ge 27$$
Multiplying the second inequality by $5$ we obtain $$ 5x + 10y ge 40$$ $$9y ge 27$$
Hence $5x+y ge 13$







inequality linear-programming






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 10 at 11:19









Atiq RahmanAtiq Rahman

1063




1063








  • 1




    $begingroup$
    You can add the equations $5x+10y geq 40$ and $9y geq 27$ to conclude $5 x+19 y geq 67$ but you can't subtract them and conclude anything meaningful. For example, we have $5 geq 3$ and $5 geq 2$ but you can't subtract the second from the first and say $0 geq 1$.
    $endgroup$
    – Eric
    Jan 10 at 11:27










  • $begingroup$
    So, how do you find the minimum value?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:30










  • $begingroup$
    @Atiq Rahman I think, you are right. $13$ is a minimal value.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:35






  • 1




    $begingroup$
    I got $$5x+ygeq 4$$ for $x=0,y=4$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 10 at 11:43










  • $begingroup$
    $4$ is the minimum value @MichaelRozenberg . $(x,y)=(0,4)$ satisfies those inequalities.
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:43














  • 1




    $begingroup$
    You can add the equations $5x+10y geq 40$ and $9y geq 27$ to conclude $5 x+19 y geq 67$ but you can't subtract them and conclude anything meaningful. For example, we have $5 geq 3$ and $5 geq 2$ but you can't subtract the second from the first and say $0 geq 1$.
    $endgroup$
    – Eric
    Jan 10 at 11:27










  • $begingroup$
    So, how do you find the minimum value?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:30










  • $begingroup$
    @Atiq Rahman I think, you are right. $13$ is a minimal value.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:35






  • 1




    $begingroup$
    I got $$5x+ygeq 4$$ for $x=0,y=4$
    $endgroup$
    – Dr. Sonnhard Graubner
    Jan 10 at 11:43










  • $begingroup$
    $4$ is the minimum value @MichaelRozenberg . $(x,y)=(0,4)$ satisfies those inequalities.
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:43








1




1




$begingroup$
You can add the equations $5x+10y geq 40$ and $9y geq 27$ to conclude $5 x+19 y geq 67$ but you can't subtract them and conclude anything meaningful. For example, we have $5 geq 3$ and $5 geq 2$ but you can't subtract the second from the first and say $0 geq 1$.
$endgroup$
– Eric
Jan 10 at 11:27




$begingroup$
You can add the equations $5x+10y geq 40$ and $9y geq 27$ to conclude $5 x+19 y geq 67$ but you can't subtract them and conclude anything meaningful. For example, we have $5 geq 3$ and $5 geq 2$ but you can't subtract the second from the first and say $0 geq 1$.
$endgroup$
– Eric
Jan 10 at 11:27












$begingroup$
So, how do you find the minimum value?
$endgroup$
– Atiq Rahman
Jan 10 at 11:30




$begingroup$
So, how do you find the minimum value?
$endgroup$
– Atiq Rahman
Jan 10 at 11:30












$begingroup$
@Atiq Rahman I think, you are right. $13$ is a minimal value.
$endgroup$
– Michael Rozenberg
Jan 10 at 11:35




$begingroup$
@Atiq Rahman I think, you are right. $13$ is a minimal value.
$endgroup$
– Michael Rozenberg
Jan 10 at 11:35




1




1




$begingroup$
I got $$5x+ygeq 4$$ for $x=0,y=4$
$endgroup$
– Dr. Sonnhard Graubner
Jan 10 at 11:43




$begingroup$
I got $$5x+ygeq 4$$ for $x=0,y=4$
$endgroup$
– Dr. Sonnhard Graubner
Jan 10 at 11:43












$begingroup$
$4$ is the minimum value @MichaelRozenberg . $(x,y)=(0,4)$ satisfies those inequalities.
$endgroup$
– Atiq Rahman
Jan 10 at 11:43




$begingroup$
$4$ is the minimum value @MichaelRozenberg . $(x,y)=(0,4)$ satisfies those inequalities.
$endgroup$
– Atiq Rahman
Jan 10 at 11:43










1 Answer
1






active

oldest

votes


















1












$begingroup$

Our conditions give an interior of $Delta ABC$,where $A(2,3)$, $B(0,5)$ and $C(0,4).$



The system $x=0$ and $x+2y=8$ gives $C(0,4)$;



The system $x=0$ and $x+y=5$ gives $B(0,5)$



and the system $x+y=5$ and $x+2y=8$ gives $A(2,3).$



Let $f(x,y)=5x+y.$



Thus, $$min_{xgeq0,ygeq0,x+yleq5,x+2ygeq8}f=min{f(0,5),f(0,4),f(2,3)}=f(0,4)=4.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How do you find the points $(0,5),(0,4),(2,3)$?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:53










  • $begingroup$
    @Atiq Rahman I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:57












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068516%2fminimum-value-of-a-linear-program%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Our conditions give an interior of $Delta ABC$,where $A(2,3)$, $B(0,5)$ and $C(0,4).$



The system $x=0$ and $x+2y=8$ gives $C(0,4)$;



The system $x=0$ and $x+y=5$ gives $B(0,5)$



and the system $x+y=5$ and $x+2y=8$ gives $A(2,3).$



Let $f(x,y)=5x+y.$



Thus, $$min_{xgeq0,ygeq0,x+yleq5,x+2ygeq8}f=min{f(0,5),f(0,4),f(2,3)}=f(0,4)=4.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How do you find the points $(0,5),(0,4),(2,3)$?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:53










  • $begingroup$
    @Atiq Rahman I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:57
















1












$begingroup$

Our conditions give an interior of $Delta ABC$,where $A(2,3)$, $B(0,5)$ and $C(0,4).$



The system $x=0$ and $x+2y=8$ gives $C(0,4)$;



The system $x=0$ and $x+y=5$ gives $B(0,5)$



and the system $x+y=5$ and $x+2y=8$ gives $A(2,3).$



Let $f(x,y)=5x+y.$



Thus, $$min_{xgeq0,ygeq0,x+yleq5,x+2ygeq8}f=min{f(0,5),f(0,4),f(2,3)}=f(0,4)=4.$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How do you find the points $(0,5),(0,4),(2,3)$?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:53










  • $begingroup$
    @Atiq Rahman I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:57














1












1








1





$begingroup$

Our conditions give an interior of $Delta ABC$,where $A(2,3)$, $B(0,5)$ and $C(0,4).$



The system $x=0$ and $x+2y=8$ gives $C(0,4)$;



The system $x=0$ and $x+y=5$ gives $B(0,5)$



and the system $x+y=5$ and $x+2y=8$ gives $A(2,3).$



Let $f(x,y)=5x+y.$



Thus, $$min_{xgeq0,ygeq0,x+yleq5,x+2ygeq8}f=min{f(0,5),f(0,4),f(2,3)}=f(0,4)=4.$$






share|cite|improve this answer











$endgroup$



Our conditions give an interior of $Delta ABC$,where $A(2,3)$, $B(0,5)$ and $C(0,4).$



The system $x=0$ and $x+2y=8$ gives $C(0,4)$;



The system $x=0$ and $x+y=5$ gives $B(0,5)$



and the system $x+y=5$ and $x+2y=8$ gives $A(2,3).$



Let $f(x,y)=5x+y.$



Thus, $$min_{xgeq0,ygeq0,x+yleq5,x+2ygeq8}f=min{f(0,5),f(0,4),f(2,3)}=f(0,4)=4.$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 10 at 11:56

























answered Jan 10 at 11:49









Michael RozenbergMichael Rozenberg

110k1896201




110k1896201












  • $begingroup$
    How do you find the points $(0,5),(0,4),(2,3)$?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:53










  • $begingroup$
    @Atiq Rahman I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:57


















  • $begingroup$
    How do you find the points $(0,5),(0,4),(2,3)$?
    $endgroup$
    – Atiq Rahman
    Jan 10 at 11:53










  • $begingroup$
    @Atiq Rahman I added something. See now.
    $endgroup$
    – Michael Rozenberg
    Jan 10 at 11:57
















$begingroup$
How do you find the points $(0,5),(0,4),(2,3)$?
$endgroup$
– Atiq Rahman
Jan 10 at 11:53




$begingroup$
How do you find the points $(0,5),(0,4),(2,3)$?
$endgroup$
– Atiq Rahman
Jan 10 at 11:53












$begingroup$
@Atiq Rahman I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 10 at 11:57




$begingroup$
@Atiq Rahman I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 10 at 11:57


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3068516%2fminimum-value-of-a-linear-program%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Cabo Verde

Gyllenstierna