Determining if this integral converge
$begingroup$
Does the following integral converge:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx $$
my attempt:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx = int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx ge int_1^infty frac{-x}{xsqrt{x^2+1}}dx = int_1^infty frac{-1}{sqrt{x^2+1}}dx ge -1 cdot int_1^infty frac{1}{sqrt{x^2+x^2}}dx = -frac{1}{sqrt{2}} int_1^infty frac{1}{sqrt{x^2}} = -frac{1}{sqrt{2}} int_1^infty frac{1}{x} $$
and since I know $ frac{1}{x} $ doesn't converge, the integral also doesn't??
calculus
$endgroup$
add a comment |
$begingroup$
Does the following integral converge:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx $$
my attempt:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx = int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx ge int_1^infty frac{-x}{xsqrt{x^2+1}}dx = int_1^infty frac{-1}{sqrt{x^2+1}}dx ge -1 cdot int_1^infty frac{1}{sqrt{x^2+x^2}}dx = -frac{1}{sqrt{2}} int_1^infty frac{1}{sqrt{x^2}} = -frac{1}{sqrt{2}} int_1^infty frac{1}{x} $$
and since I know $ frac{1}{x} $ doesn't converge, the integral also doesn't??
calculus
$endgroup$
1
$begingroup$
No. You've shown the value of the integral is $ge-infty$ which doesn't help.
$endgroup$
– saulspatz
Jan 9 at 14:40
add a comment |
$begingroup$
Does the following integral converge:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx $$
my attempt:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx = int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx ge int_1^infty frac{-x}{xsqrt{x^2+1}}dx = int_1^infty frac{-1}{sqrt{x^2+1}}dx ge -1 cdot int_1^infty frac{1}{sqrt{x^2+x^2}}dx = -frac{1}{sqrt{2}} int_1^infty frac{1}{sqrt{x^2}} = -frac{1}{sqrt{2}} int_1^infty frac{1}{x} $$
and since I know $ frac{1}{x} $ doesn't converge, the integral also doesn't??
calculus
$endgroup$
Does the following integral converge:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx $$
my attempt:
$$ int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx = int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx ge int_1^infty frac{-x}{xsqrt{x^2+1}}dx = int_1^infty frac{-1}{sqrt{x^2+1}}dx ge -1 cdot int_1^infty frac{1}{sqrt{x^2+x^2}}dx = -frac{1}{sqrt{2}} int_1^infty frac{1}{sqrt{x^2}} = -frac{1}{sqrt{2}} int_1^infty frac{1}{x} $$
and since I know $ frac{1}{x} $ doesn't converge, the integral also doesn't??
calculus
calculus
asked Jan 9 at 14:36
bm1125bm1125
68516
68516
1
$begingroup$
No. You've shown the value of the integral is $ge-infty$ which doesn't help.
$endgroup$
– saulspatz
Jan 9 at 14:40
add a comment |
1
$begingroup$
No. You've shown the value of the integral is $ge-infty$ which doesn't help.
$endgroup$
– saulspatz
Jan 9 at 14:40
1
1
$begingroup$
No. You've shown the value of the integral is $ge-infty$ which doesn't help.
$endgroup$
– saulspatz
Jan 9 at 14:40
$begingroup$
No. You've shown the value of the integral is $ge-infty$ which doesn't help.
$endgroup$
– saulspatz
Jan 9 at 14:40
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
begin{eqnarray*}
int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx
& = & int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx \
& = & int_1^infty frac{1}{xsqrt{x^2+1}(sqrt{x^2+1} + x)}dx \
& stackrel{sqrt{x^2+1}geq x}{leq} & int_1^infty frac{1}{xcdot x (x+x)}dx = int_1^infty frac{1}{2x^3}dx < infty
end{eqnarray*}
So, it is convergent.
$endgroup$
add a comment |
$begingroup$
For large $x$, we see by Taylor expansion that $$sqrt{x^2 + 1} = xsqrt{1 + frac 1 {x^2}} approx xleft(1 + frac 1 {2x^2}right).$$ Thus $$sqrt{x^2 + 1} - x approx frac1{2x},$$ so as $x to infty$, we have $$frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}} approx frac{1/(2x)}{x^2}approx frac{1}{2x^{3}}.$$ Hence the integral converges by comparison with $$int^infty_{1}frac{dx}{2x^{3}}.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067510%2fdetermining-if-this-integral-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
begin{eqnarray*}
int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx
& = & int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx \
& = & int_1^infty frac{1}{xsqrt{x^2+1}(sqrt{x^2+1} + x)}dx \
& stackrel{sqrt{x^2+1}geq x}{leq} & int_1^infty frac{1}{xcdot x (x+x)}dx = int_1^infty frac{1}{2x^3}dx < infty
end{eqnarray*}
So, it is convergent.
$endgroup$
add a comment |
$begingroup$
begin{eqnarray*}
int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx
& = & int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx \
& = & int_1^infty frac{1}{xsqrt{x^2+1}(sqrt{x^2+1} + x)}dx \
& stackrel{sqrt{x^2+1}geq x}{leq} & int_1^infty frac{1}{xcdot x (x+x)}dx = int_1^infty frac{1}{2x^3}dx < infty
end{eqnarray*}
So, it is convergent.
$endgroup$
add a comment |
$begingroup$
begin{eqnarray*}
int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx
& = & int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx \
& = & int_1^infty frac{1}{xsqrt{x^2+1}(sqrt{x^2+1} + x)}dx \
& stackrel{sqrt{x^2+1}geq x}{leq} & int_1^infty frac{1}{xcdot x (x+x)}dx = int_1^infty frac{1}{2x^3}dx < infty
end{eqnarray*}
So, it is convergent.
$endgroup$
begin{eqnarray*}
int_1^infty left( frac{1}{x} - frac{1}{sqrt{x^2+1}} right)dx
& = & int_1^infty frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}}dx \
& = & int_1^infty frac{1}{xsqrt{x^2+1}(sqrt{x^2+1} + x)}dx \
& stackrel{sqrt{x^2+1}geq x}{leq} & int_1^infty frac{1}{xcdot x (x+x)}dx = int_1^infty frac{1}{2x^3}dx < infty
end{eqnarray*}
So, it is convergent.
answered Jan 9 at 14:58
trancelocationtrancelocation
13.6k1828
13.6k1828
add a comment |
add a comment |
$begingroup$
For large $x$, we see by Taylor expansion that $$sqrt{x^2 + 1} = xsqrt{1 + frac 1 {x^2}} approx xleft(1 + frac 1 {2x^2}right).$$ Thus $$sqrt{x^2 + 1} - x approx frac1{2x},$$ so as $x to infty$, we have $$frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}} approx frac{1/(2x)}{x^2}approx frac{1}{2x^{3}}.$$ Hence the integral converges by comparison with $$int^infty_{1}frac{dx}{2x^{3}}.$$
$endgroup$
add a comment |
$begingroup$
For large $x$, we see by Taylor expansion that $$sqrt{x^2 + 1} = xsqrt{1 + frac 1 {x^2}} approx xleft(1 + frac 1 {2x^2}right).$$ Thus $$sqrt{x^2 + 1} - x approx frac1{2x},$$ so as $x to infty$, we have $$frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}} approx frac{1/(2x)}{x^2}approx frac{1}{2x^{3}}.$$ Hence the integral converges by comparison with $$int^infty_{1}frac{dx}{2x^{3}}.$$
$endgroup$
add a comment |
$begingroup$
For large $x$, we see by Taylor expansion that $$sqrt{x^2 + 1} = xsqrt{1 + frac 1 {x^2}} approx xleft(1 + frac 1 {2x^2}right).$$ Thus $$sqrt{x^2 + 1} - x approx frac1{2x},$$ so as $x to infty$, we have $$frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}} approx frac{1/(2x)}{x^2}approx frac{1}{2x^{3}}.$$ Hence the integral converges by comparison with $$int^infty_{1}frac{dx}{2x^{3}}.$$
$endgroup$
For large $x$, we see by Taylor expansion that $$sqrt{x^2 + 1} = xsqrt{1 + frac 1 {x^2}} approx xleft(1 + frac 1 {2x^2}right).$$ Thus $$sqrt{x^2 + 1} - x approx frac1{2x},$$ so as $x to infty$, we have $$frac{sqrt{x^2+1}-x}{xsqrt{x^2+1}} approx frac{1/(2x)}{x^2}approx frac{1}{2x^{3}}.$$ Hence the integral converges by comparison with $$int^infty_{1}frac{dx}{2x^{3}}.$$
answered Jan 9 at 14:50
User8128User8128
10.9k1622
10.9k1622
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3067510%2fdetermining-if-this-integral-converge%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
No. You've shown the value of the integral is $ge-infty$ which doesn't help.
$endgroup$
– saulspatz
Jan 9 at 14:40