Formula for a Line Integral in Curvilinear Coordinates.
$begingroup$
I am familiar with the formula for a path integral given a parametrisation $textbf{x}(t)$, $t in l subseteq mathbb{R}$ of a curve $C$, and given some scalar function $f(x,y,z)$, $$int_C f ds = int_l f(textbf{x}(t)) Big | Big |frac{d textbf{x}}{d t} Big | Big| dt $$
Now, my lecture notes say if we are in some curvilinear coordinates $(xi_1, xi_2, xi_3)$, we describe the curve in curvilinear coordinates by $boldsymbol{xi}(u), u in l' subseteq mathbb{R}$, we have some transformation $boldsymbol{phi}$ such that the curve $C$ is parametrised by $boldsymbol{phi}(boldsymbol{xi}(u))$, and we have some scalar function $g$ = $g(boldsymbol{xi})$, $$int_C g(boldsymbol{xi}) ds = int_{l'} g(boldsymbol{xi}) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du $$
My understanding is that usually when we have a scalar function $f(x,y,z)$, for every point in 3D space, there is a (unique) corresponding scalar value. But in the curvilinear case, when we consider scalar functions, do we consider functions that directly create a correspondence between points in parameter space $(xi_1, xi_2, xi_3)$ to scalar values? Or do we first convert these points into cartesian coordinates? Why is the formula not $$int_C g(boldsymbol{phi}(boldsymbol{xi})) ds = int_{l'} g(boldsymbol{phi}(boldsymbol{xi})) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du$$
Which seems to be equivalent to the first formula. When we integrate a scalar field over some curve, don't we want the scalar field to be evaluated over that curve?
vector-spaces vector-analysis line-integrals scalar-fields curvilinear-coordinates
$endgroup$
add a comment |
$begingroup$
I am familiar with the formula for a path integral given a parametrisation $textbf{x}(t)$, $t in l subseteq mathbb{R}$ of a curve $C$, and given some scalar function $f(x,y,z)$, $$int_C f ds = int_l f(textbf{x}(t)) Big | Big |frac{d textbf{x}}{d t} Big | Big| dt $$
Now, my lecture notes say if we are in some curvilinear coordinates $(xi_1, xi_2, xi_3)$, we describe the curve in curvilinear coordinates by $boldsymbol{xi}(u), u in l' subseteq mathbb{R}$, we have some transformation $boldsymbol{phi}$ such that the curve $C$ is parametrised by $boldsymbol{phi}(boldsymbol{xi}(u))$, and we have some scalar function $g$ = $g(boldsymbol{xi})$, $$int_C g(boldsymbol{xi}) ds = int_{l'} g(boldsymbol{xi}) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du $$
My understanding is that usually when we have a scalar function $f(x,y,z)$, for every point in 3D space, there is a (unique) corresponding scalar value. But in the curvilinear case, when we consider scalar functions, do we consider functions that directly create a correspondence between points in parameter space $(xi_1, xi_2, xi_3)$ to scalar values? Or do we first convert these points into cartesian coordinates? Why is the formula not $$int_C g(boldsymbol{phi}(boldsymbol{xi})) ds = int_{l'} g(boldsymbol{phi}(boldsymbol{xi})) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du$$
Which seems to be equivalent to the first formula. When we integrate a scalar field over some curve, don't we want the scalar field to be evaluated over that curve?
vector-spaces vector-analysis line-integrals scalar-fields curvilinear-coordinates
$endgroup$
add a comment |
$begingroup$
I am familiar with the formula for a path integral given a parametrisation $textbf{x}(t)$, $t in l subseteq mathbb{R}$ of a curve $C$, and given some scalar function $f(x,y,z)$, $$int_C f ds = int_l f(textbf{x}(t)) Big | Big |frac{d textbf{x}}{d t} Big | Big| dt $$
Now, my lecture notes say if we are in some curvilinear coordinates $(xi_1, xi_2, xi_3)$, we describe the curve in curvilinear coordinates by $boldsymbol{xi}(u), u in l' subseteq mathbb{R}$, we have some transformation $boldsymbol{phi}$ such that the curve $C$ is parametrised by $boldsymbol{phi}(boldsymbol{xi}(u))$, and we have some scalar function $g$ = $g(boldsymbol{xi})$, $$int_C g(boldsymbol{xi}) ds = int_{l'} g(boldsymbol{xi}) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du $$
My understanding is that usually when we have a scalar function $f(x,y,z)$, for every point in 3D space, there is a (unique) corresponding scalar value. But in the curvilinear case, when we consider scalar functions, do we consider functions that directly create a correspondence between points in parameter space $(xi_1, xi_2, xi_3)$ to scalar values? Or do we first convert these points into cartesian coordinates? Why is the formula not $$int_C g(boldsymbol{phi}(boldsymbol{xi})) ds = int_{l'} g(boldsymbol{phi}(boldsymbol{xi})) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du$$
Which seems to be equivalent to the first formula. When we integrate a scalar field over some curve, don't we want the scalar field to be evaluated over that curve?
vector-spaces vector-analysis line-integrals scalar-fields curvilinear-coordinates
$endgroup$
I am familiar with the formula for a path integral given a parametrisation $textbf{x}(t)$, $t in l subseteq mathbb{R}$ of a curve $C$, and given some scalar function $f(x,y,z)$, $$int_C f ds = int_l f(textbf{x}(t)) Big | Big |frac{d textbf{x}}{d t} Big | Big| dt $$
Now, my lecture notes say if we are in some curvilinear coordinates $(xi_1, xi_2, xi_3)$, we describe the curve in curvilinear coordinates by $boldsymbol{xi}(u), u in l' subseteq mathbb{R}$, we have some transformation $boldsymbol{phi}$ such that the curve $C$ is parametrised by $boldsymbol{phi}(boldsymbol{xi}(u))$, and we have some scalar function $g$ = $g(boldsymbol{xi})$, $$int_C g(boldsymbol{xi}) ds = int_{l'} g(boldsymbol{xi}) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du $$
My understanding is that usually when we have a scalar function $f(x,y,z)$, for every point in 3D space, there is a (unique) corresponding scalar value. But in the curvilinear case, when we consider scalar functions, do we consider functions that directly create a correspondence between points in parameter space $(xi_1, xi_2, xi_3)$ to scalar values? Or do we first convert these points into cartesian coordinates? Why is the formula not $$int_C g(boldsymbol{phi}(boldsymbol{xi})) ds = int_{l'} g(boldsymbol{phi}(boldsymbol{xi})) Big | Big |frac{d boldsymbol{phi}(boldsymbol{xi})(u)}{d u} Big | Big| du$$
Which seems to be equivalent to the first formula. When we integrate a scalar field over some curve, don't we want the scalar field to be evaluated over that curve?
vector-spaces vector-analysis line-integrals scalar-fields curvilinear-coordinates
vector-spaces vector-analysis line-integrals scalar-fields curvilinear-coordinates
edited Jan 9 at 13:44
asked May 23 '18 at 10:42
user445909
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2792725%2fformula-for-a-line-integral-in-curvilinear-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2792725%2fformula-for-a-line-integral-in-curvilinear-coordinates%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown