How to prove $lim_{(x,y) to (0,0)} frac{xy}{x^4+y^4}$ does not exist











up vote
1
down vote

favorite












$$lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$$



Anyone can teach me how to solve this question? I have tried so many times but still unable to solve it.










share|cite|improve this question









New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 3




    Work out what happens as $xto0$ with $y$ held fixed at zero. Then work out what happens as you approach the origin along the curve $y=x^4$. Then write up what you have found, and post it as an answer.
    – Gerry Myerson
    Dec 2 at 3:39










  • Try to choose a suitable path depending on some variable constant.
    – Anik Bhowmick
    Dec 2 at 4:00










  • Well the fact that the expression has transposable variables (i.e. $f(x,y) equiv f(y,x)$) means that you just need to find $lim_{xto 0} f(x,x)$, or more precisely: $$lim_{xto 0}{2x^{-2}}$$ I think
    – Rhys Hughes
    Dec 2 at 4:21

















up vote
1
down vote

favorite












$$lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$$



Anyone can teach me how to solve this question? I have tried so many times but still unable to solve it.










share|cite|improve this question









New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 3




    Work out what happens as $xto0$ with $y$ held fixed at zero. Then work out what happens as you approach the origin along the curve $y=x^4$. Then write up what you have found, and post it as an answer.
    – Gerry Myerson
    Dec 2 at 3:39










  • Try to choose a suitable path depending on some variable constant.
    – Anik Bhowmick
    Dec 2 at 4:00










  • Well the fact that the expression has transposable variables (i.e. $f(x,y) equiv f(y,x)$) means that you just need to find $lim_{xto 0} f(x,x)$, or more precisely: $$lim_{xto 0}{2x^{-2}}$$ I think
    – Rhys Hughes
    Dec 2 at 4:21















up vote
1
down vote

favorite









up vote
1
down vote

favorite











$$lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$$



Anyone can teach me how to solve this question? I have tried so many times but still unable to solve it.










share|cite|improve this question









New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











$$lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$$



Anyone can teach me how to solve this question? I have tried so many times but still unable to solve it.







calculus limits






share|cite|improve this question









New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Dec 2 at 4:20









Tianlalu

2,9451936




2,9451936






New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Dec 2 at 3:35









Alvin

61




61




New contributor




Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Alvin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 3




    Work out what happens as $xto0$ with $y$ held fixed at zero. Then work out what happens as you approach the origin along the curve $y=x^4$. Then write up what you have found, and post it as an answer.
    – Gerry Myerson
    Dec 2 at 3:39










  • Try to choose a suitable path depending on some variable constant.
    – Anik Bhowmick
    Dec 2 at 4:00










  • Well the fact that the expression has transposable variables (i.e. $f(x,y) equiv f(y,x)$) means that you just need to find $lim_{xto 0} f(x,x)$, or more precisely: $$lim_{xto 0}{2x^{-2}}$$ I think
    – Rhys Hughes
    Dec 2 at 4:21
















  • 3




    Work out what happens as $xto0$ with $y$ held fixed at zero. Then work out what happens as you approach the origin along the curve $y=x^4$. Then write up what you have found, and post it as an answer.
    – Gerry Myerson
    Dec 2 at 3:39










  • Try to choose a suitable path depending on some variable constant.
    – Anik Bhowmick
    Dec 2 at 4:00










  • Well the fact that the expression has transposable variables (i.e. $f(x,y) equiv f(y,x)$) means that you just need to find $lim_{xto 0} f(x,x)$, or more precisely: $$lim_{xto 0}{2x^{-2}}$$ I think
    – Rhys Hughes
    Dec 2 at 4:21










3




3




Work out what happens as $xto0$ with $y$ held fixed at zero. Then work out what happens as you approach the origin along the curve $y=x^4$. Then write up what you have found, and post it as an answer.
– Gerry Myerson
Dec 2 at 3:39




Work out what happens as $xto0$ with $y$ held fixed at zero. Then work out what happens as you approach the origin along the curve $y=x^4$. Then write up what you have found, and post it as an answer.
– Gerry Myerson
Dec 2 at 3:39












Try to choose a suitable path depending on some variable constant.
– Anik Bhowmick
Dec 2 at 4:00




Try to choose a suitable path depending on some variable constant.
– Anik Bhowmick
Dec 2 at 4:00












Well the fact that the expression has transposable variables (i.e. $f(x,y) equiv f(y,x)$) means that you just need to find $lim_{xto 0} f(x,x)$, or more precisely: $$lim_{xto 0}{2x^{-2}}$$ I think
– Rhys Hughes
Dec 2 at 4:21






Well the fact that the expression has transposable variables (i.e. $f(x,y) equiv f(y,x)$) means that you just need to find $lim_{xto 0} f(x,x)$, or more precisely: $$lim_{xto 0}{2x^{-2}}$$ I think
– Rhys Hughes
Dec 2 at 4:21












1 Answer
1






active

oldest

votes

















up vote
1
down vote













Suppose the limit $lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$ exits then in some deleted nbd of $(0,0)$ the function $f:Bbb R^2-{(0,0)}rightarrow Bbb R,f(x,y)=frac{xy}{x^4+y^4}$ will be bounded . But notice that on the set $S:={(x,y)in Bbb R^2-{(0,0)}: x=y}$ the function $f$ is of the form $frac{x^2}{2x^4}=frac{1}{2x^2}$ i.e. in every deleted nbd of $(0,0)$ the function is unbounded.



$lim_{(x,y)rightarrow (0,0)} f(x,y)=limplies$ for $epsilon=1$ there is a $delta>0$ such that $0<x^2+y^2<deltaimplies |f(x,y)-l|<1implies l-1<f(x,y)<l+1 , forall (x,y)$ with $0<x^2+y^2<delta$ i.e. $f$ is bounded in a deleted nbd of $(0,0)$.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });






    Alvin is a new contributor. Be nice, and check out our Code of Conduct.










    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022195%2fhow-to-prove-lim-x-y-to-0-0-fracxyx4y4-does-not-exist%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    Suppose the limit $lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$ exits then in some deleted nbd of $(0,0)$ the function $f:Bbb R^2-{(0,0)}rightarrow Bbb R,f(x,y)=frac{xy}{x^4+y^4}$ will be bounded . But notice that on the set $S:={(x,y)in Bbb R^2-{(0,0)}: x=y}$ the function $f$ is of the form $frac{x^2}{2x^4}=frac{1}{2x^2}$ i.e. in every deleted nbd of $(0,0)$ the function is unbounded.



    $lim_{(x,y)rightarrow (0,0)} f(x,y)=limplies$ for $epsilon=1$ there is a $delta>0$ such that $0<x^2+y^2<deltaimplies |f(x,y)-l|<1implies l-1<f(x,y)<l+1 , forall (x,y)$ with $0<x^2+y^2<delta$ i.e. $f$ is bounded in a deleted nbd of $(0,0)$.






    share|cite|improve this answer



























      up vote
      1
      down vote













      Suppose the limit $lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$ exits then in some deleted nbd of $(0,0)$ the function $f:Bbb R^2-{(0,0)}rightarrow Bbb R,f(x,y)=frac{xy}{x^4+y^4}$ will be bounded . But notice that on the set $S:={(x,y)in Bbb R^2-{(0,0)}: x=y}$ the function $f$ is of the form $frac{x^2}{2x^4}=frac{1}{2x^2}$ i.e. in every deleted nbd of $(0,0)$ the function is unbounded.



      $lim_{(x,y)rightarrow (0,0)} f(x,y)=limplies$ for $epsilon=1$ there is a $delta>0$ such that $0<x^2+y^2<deltaimplies |f(x,y)-l|<1implies l-1<f(x,y)<l+1 , forall (x,y)$ with $0<x^2+y^2<delta$ i.e. $f$ is bounded in a deleted nbd of $(0,0)$.






      share|cite|improve this answer

























        up vote
        1
        down vote










        up vote
        1
        down vote









        Suppose the limit $lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$ exits then in some deleted nbd of $(0,0)$ the function $f:Bbb R^2-{(0,0)}rightarrow Bbb R,f(x,y)=frac{xy}{x^4+y^4}$ will be bounded . But notice that on the set $S:={(x,y)in Bbb R^2-{(0,0)}: x=y}$ the function $f$ is of the form $frac{x^2}{2x^4}=frac{1}{2x^2}$ i.e. in every deleted nbd of $(0,0)$ the function is unbounded.



        $lim_{(x,y)rightarrow (0,0)} f(x,y)=limplies$ for $epsilon=1$ there is a $delta>0$ such that $0<x^2+y^2<deltaimplies |f(x,y)-l|<1implies l-1<f(x,y)<l+1 , forall (x,y)$ with $0<x^2+y^2<delta$ i.e. $f$ is bounded in a deleted nbd of $(0,0)$.






        share|cite|improve this answer














        Suppose the limit $lim_{(x,y)to(0,0)} frac{xy}{x^4+y^4}$ exits then in some deleted nbd of $(0,0)$ the function $f:Bbb R^2-{(0,0)}rightarrow Bbb R,f(x,y)=frac{xy}{x^4+y^4}$ will be bounded . But notice that on the set $S:={(x,y)in Bbb R^2-{(0,0)}: x=y}$ the function $f$ is of the form $frac{x^2}{2x^4}=frac{1}{2x^2}$ i.e. in every deleted nbd of $(0,0)$ the function is unbounded.



        $lim_{(x,y)rightarrow (0,0)} f(x,y)=limplies$ for $epsilon=1$ there is a $delta>0$ such that $0<x^2+y^2<deltaimplies |f(x,y)-l|<1implies l-1<f(x,y)<l+1 , forall (x,y)$ with $0<x^2+y^2<delta$ i.e. $f$ is bounded in a deleted nbd of $(0,0)$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Dec 2 at 4:45

























        answered Dec 2 at 4:35









        UserS

        1,441112




        1,441112






















            Alvin is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            Alvin is a new contributor. Be nice, and check out our Code of Conduct.













            Alvin is a new contributor. Be nice, and check out our Code of Conduct.












            Alvin is a new contributor. Be nice, and check out our Code of Conduct.
















            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3022195%2fhow-to-prove-lim-x-y-to-0-0-fracxyx4y4-does-not-exist%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna