Find Random Number Generator following the density $f (x) = frac{1 + alpha x}{2}$, $ −1 ≤ x ≤ 1$, $−1...
How could random variables with the following density function be generated
from a uniform random number generator? $f (x) = frac{1 + alpha x}{2}$, $ −1 ≤ x ≤ 1$, $−1 ≤alpha ≤ 1$.
To find the Random number generator one first needs to find the distribution function and then the quantile function. However, I have troubles solving this on my own:
begin{align}
F(x) & = int_{-1}^x frac{1+alpha u}{2} du\
& = frac 12 Big( (x+frac{alpha x^2}{2})-(-1+frac{alpha}{2})Big)\
& = alpha x^2 + 2x + 2 - alpha
end{align}
I am not sure how to handle the $alpha$. For getting the quantile(=inverse) function i need to solve this last expression for x.
probability probability-theory statistics probability-distributions inverse-function
add a comment |
How could random variables with the following density function be generated
from a uniform random number generator? $f (x) = frac{1 + alpha x}{2}$, $ −1 ≤ x ≤ 1$, $−1 ≤alpha ≤ 1$.
To find the Random number generator one first needs to find the distribution function and then the quantile function. However, I have troubles solving this on my own:
begin{align}
F(x) & = int_{-1}^x frac{1+alpha u}{2} du\
& = frac 12 Big( (x+frac{alpha x^2}{2})-(-1+frac{alpha}{2})Big)\
& = alpha x^2 + 2x + 2 - alpha
end{align}
I am not sure how to handle the $alpha$. For getting the quantile(=inverse) function i need to solve this last expression for x.
probability probability-theory statistics probability-distributions inverse-function
I think you could use the quadratic formula to solve for x, treating a as a constant!
– Zach
Dec 10 '18 at 12:08
add a comment |
How could random variables with the following density function be generated
from a uniform random number generator? $f (x) = frac{1 + alpha x}{2}$, $ −1 ≤ x ≤ 1$, $−1 ≤alpha ≤ 1$.
To find the Random number generator one first needs to find the distribution function and then the quantile function. However, I have troubles solving this on my own:
begin{align}
F(x) & = int_{-1}^x frac{1+alpha u}{2} du\
& = frac 12 Big( (x+frac{alpha x^2}{2})-(-1+frac{alpha}{2})Big)\
& = alpha x^2 + 2x + 2 - alpha
end{align}
I am not sure how to handle the $alpha$. For getting the quantile(=inverse) function i need to solve this last expression for x.
probability probability-theory statistics probability-distributions inverse-function
How could random variables with the following density function be generated
from a uniform random number generator? $f (x) = frac{1 + alpha x}{2}$, $ −1 ≤ x ≤ 1$, $−1 ≤alpha ≤ 1$.
To find the Random number generator one first needs to find the distribution function and then the quantile function. However, I have troubles solving this on my own:
begin{align}
F(x) & = int_{-1}^x frac{1+alpha u}{2} du\
& = frac 12 Big( (x+frac{alpha x^2}{2})-(-1+frac{alpha}{2})Big)\
& = alpha x^2 + 2x + 2 - alpha
end{align}
I am not sure how to handle the $alpha$. For getting the quantile(=inverse) function i need to solve this last expression for x.
probability probability-theory statistics probability-distributions inverse-function
probability probability-theory statistics probability-distributions inverse-function
edited Dec 11 '18 at 6:04
user1101010
7591630
7591630
asked Dec 10 '18 at 10:57
user1607
1798
1798
I think you could use the quadratic formula to solve for x, treating a as a constant!
– Zach
Dec 10 '18 at 12:08
add a comment |
I think you could use the quadratic formula to solve for x, treating a as a constant!
– Zach
Dec 10 '18 at 12:08
I think you could use the quadratic formula to solve for x, treating a as a constant!
– Zach
Dec 10 '18 at 12:08
I think you could use the quadratic formula to solve for x, treating a as a constant!
– Zach
Dec 10 '18 at 12:08
add a comment |
1 Answer
1
active
oldest
votes
Not sure how you get from your second line to the third, there is clearly error somewhere
begin{equation}
F(x) = frac{alpha}{4}(x^2 - 1) + frac{1}{2}(x+1)
end{equation}
with obvious properties $F(x=-1)=0$ and $F(x=1)=1$. Now assign $F(x)$ to RV $xi$ in the [0...1] range and find inverse:
begin{equation}
x = F^{-1}(xi)
end{equation}
Simple quadratic equation with solution:
begin{equation}
x = frac{2 ; sqrt{frac{1}{4} + alpha(frac{alpha}{4} + xi - frac{1}{2})} - 1}{alpha}
end{equation}
For the case when $alpha=0$, $x=2xi-1$
Easy to check:
begin{equation}
xi=0, ;then; x=-1
end{equation}
begin{equation}
xi=1, ;then; x=+1
end{equation}
Python code
import numpy as np
import matplotlib.pyplot as plt
def PDF(x, alpha):
return (1.0 + alpha*x) / 2
def sampleAlpha(n, alpha):
U01 = np.random.uniform(size=n)
if alpha == 0.0:
return 2.0*U01 - 1.0
D = 0.25 + alpha*(U01 + 0.25*alpha - 0.5)
return (2.0*np.sqrt(D) - 1.0) / alpha
nbins = 100
xmin = -1.0
xmax = 1.0
alpha = 0.3
t = np.linspace(xmin, xmax, nbins + 1)
q = sampleAlpha(100000, alpha)
h, bedges = np.histogram(q, bins = t, density = True)
p = PDF(t, alpha)
plt.bar(bedges[:-1], h, width = (xmax - xmin)/float(nbins), align='edge')
plt.plot(t, p, 'r') # plotting PDF
plt.xlim(xmin, xmax)
plt.show()
generates graphs like one below for sampled vs PDF
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033771%2ffind-random-number-generator-following-the-density-f-x-frac1-alpha-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Not sure how you get from your second line to the third, there is clearly error somewhere
begin{equation}
F(x) = frac{alpha}{4}(x^2 - 1) + frac{1}{2}(x+1)
end{equation}
with obvious properties $F(x=-1)=0$ and $F(x=1)=1$. Now assign $F(x)$ to RV $xi$ in the [0...1] range and find inverse:
begin{equation}
x = F^{-1}(xi)
end{equation}
Simple quadratic equation with solution:
begin{equation}
x = frac{2 ; sqrt{frac{1}{4} + alpha(frac{alpha}{4} + xi - frac{1}{2})} - 1}{alpha}
end{equation}
For the case when $alpha=0$, $x=2xi-1$
Easy to check:
begin{equation}
xi=0, ;then; x=-1
end{equation}
begin{equation}
xi=1, ;then; x=+1
end{equation}
Python code
import numpy as np
import matplotlib.pyplot as plt
def PDF(x, alpha):
return (1.0 + alpha*x) / 2
def sampleAlpha(n, alpha):
U01 = np.random.uniform(size=n)
if alpha == 0.0:
return 2.0*U01 - 1.0
D = 0.25 + alpha*(U01 + 0.25*alpha - 0.5)
return (2.0*np.sqrt(D) - 1.0) / alpha
nbins = 100
xmin = -1.0
xmax = 1.0
alpha = 0.3
t = np.linspace(xmin, xmax, nbins + 1)
q = sampleAlpha(100000, alpha)
h, bedges = np.histogram(q, bins = t, density = True)
p = PDF(t, alpha)
plt.bar(bedges[:-1], h, width = (xmax - xmin)/float(nbins), align='edge')
plt.plot(t, p, 'r') # plotting PDF
plt.xlim(xmin, xmax)
plt.show()
generates graphs like one below for sampled vs PDF
add a comment |
Not sure how you get from your second line to the third, there is clearly error somewhere
begin{equation}
F(x) = frac{alpha}{4}(x^2 - 1) + frac{1}{2}(x+1)
end{equation}
with obvious properties $F(x=-1)=0$ and $F(x=1)=1$. Now assign $F(x)$ to RV $xi$ in the [0...1] range and find inverse:
begin{equation}
x = F^{-1}(xi)
end{equation}
Simple quadratic equation with solution:
begin{equation}
x = frac{2 ; sqrt{frac{1}{4} + alpha(frac{alpha}{4} + xi - frac{1}{2})} - 1}{alpha}
end{equation}
For the case when $alpha=0$, $x=2xi-1$
Easy to check:
begin{equation}
xi=0, ;then; x=-1
end{equation}
begin{equation}
xi=1, ;then; x=+1
end{equation}
Python code
import numpy as np
import matplotlib.pyplot as plt
def PDF(x, alpha):
return (1.0 + alpha*x) / 2
def sampleAlpha(n, alpha):
U01 = np.random.uniform(size=n)
if alpha == 0.0:
return 2.0*U01 - 1.0
D = 0.25 + alpha*(U01 + 0.25*alpha - 0.5)
return (2.0*np.sqrt(D) - 1.0) / alpha
nbins = 100
xmin = -1.0
xmax = 1.0
alpha = 0.3
t = np.linspace(xmin, xmax, nbins + 1)
q = sampleAlpha(100000, alpha)
h, bedges = np.histogram(q, bins = t, density = True)
p = PDF(t, alpha)
plt.bar(bedges[:-1], h, width = (xmax - xmin)/float(nbins), align='edge')
plt.plot(t, p, 'r') # plotting PDF
plt.xlim(xmin, xmax)
plt.show()
generates graphs like one below for sampled vs PDF
add a comment |
Not sure how you get from your second line to the third, there is clearly error somewhere
begin{equation}
F(x) = frac{alpha}{4}(x^2 - 1) + frac{1}{2}(x+1)
end{equation}
with obvious properties $F(x=-1)=0$ and $F(x=1)=1$. Now assign $F(x)$ to RV $xi$ in the [0...1] range and find inverse:
begin{equation}
x = F^{-1}(xi)
end{equation}
Simple quadratic equation with solution:
begin{equation}
x = frac{2 ; sqrt{frac{1}{4} + alpha(frac{alpha}{4} + xi - frac{1}{2})} - 1}{alpha}
end{equation}
For the case when $alpha=0$, $x=2xi-1$
Easy to check:
begin{equation}
xi=0, ;then; x=-1
end{equation}
begin{equation}
xi=1, ;then; x=+1
end{equation}
Python code
import numpy as np
import matplotlib.pyplot as plt
def PDF(x, alpha):
return (1.0 + alpha*x) / 2
def sampleAlpha(n, alpha):
U01 = np.random.uniform(size=n)
if alpha == 0.0:
return 2.0*U01 - 1.0
D = 0.25 + alpha*(U01 + 0.25*alpha - 0.5)
return (2.0*np.sqrt(D) - 1.0) / alpha
nbins = 100
xmin = -1.0
xmax = 1.0
alpha = 0.3
t = np.linspace(xmin, xmax, nbins + 1)
q = sampleAlpha(100000, alpha)
h, bedges = np.histogram(q, bins = t, density = True)
p = PDF(t, alpha)
plt.bar(bedges[:-1], h, width = (xmax - xmin)/float(nbins), align='edge')
plt.plot(t, p, 'r') # plotting PDF
plt.xlim(xmin, xmax)
plt.show()
generates graphs like one below for sampled vs PDF
Not sure how you get from your second line to the third, there is clearly error somewhere
begin{equation}
F(x) = frac{alpha}{4}(x^2 - 1) + frac{1}{2}(x+1)
end{equation}
with obvious properties $F(x=-1)=0$ and $F(x=1)=1$. Now assign $F(x)$ to RV $xi$ in the [0...1] range and find inverse:
begin{equation}
x = F^{-1}(xi)
end{equation}
Simple quadratic equation with solution:
begin{equation}
x = frac{2 ; sqrt{frac{1}{4} + alpha(frac{alpha}{4} + xi - frac{1}{2})} - 1}{alpha}
end{equation}
For the case when $alpha=0$, $x=2xi-1$
Easy to check:
begin{equation}
xi=0, ;then; x=-1
end{equation}
begin{equation}
xi=1, ;then; x=+1
end{equation}
Python code
import numpy as np
import matplotlib.pyplot as plt
def PDF(x, alpha):
return (1.0 + alpha*x) / 2
def sampleAlpha(n, alpha):
U01 = np.random.uniform(size=n)
if alpha == 0.0:
return 2.0*U01 - 1.0
D = 0.25 + alpha*(U01 + 0.25*alpha - 0.5)
return (2.0*np.sqrt(D) - 1.0) / alpha
nbins = 100
xmin = -1.0
xmax = 1.0
alpha = 0.3
t = np.linspace(xmin, xmax, nbins + 1)
q = sampleAlpha(100000, alpha)
h, bedges = np.histogram(q, bins = t, density = True)
p = PDF(t, alpha)
plt.bar(bedges[:-1], h, width = (xmax - xmin)/float(nbins), align='edge')
plt.plot(t, p, 'r') # plotting PDF
plt.xlim(xmin, xmax)
plt.show()
generates graphs like one below for sampled vs PDF
answered Dec 11 '18 at 5:11
Severin Pappadeux
15318
15318
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033771%2ffind-random-number-generator-following-the-density-f-x-frac1-alpha-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I think you could use the quadratic formula to solve for x, treating a as a constant!
– Zach
Dec 10 '18 at 12:08