Find a vector field $G$ with curl ($G$) = $F$
$begingroup$
Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
We know that
$$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$
How do I go further?
multivariable-calculus vector-fields
$endgroup$
add a comment |
$begingroup$
Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
We know that
$$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$
How do I go further?
multivariable-calculus vector-fields
$endgroup$
add a comment |
$begingroup$
Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
We know that
$$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$
How do I go further?
multivariable-calculus vector-fields
$endgroup$
Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
We know that
$$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$
How do I go further?
multivariable-calculus vector-fields
multivariable-calculus vector-fields
edited Dec 1 '15 at 0:21
user286826
asked Nov 30 '15 at 23:56
user286826user286826
443211
443211
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$
$$
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$
$$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$
for functions $f$ and $h$ to be determined by the remaining equation ...
$$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$
one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$
So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1554001%2ffind-a-vector-field-g-with-curl-g-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$
$$
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$
$$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$
for functions $f$ and $h$ to be determined by the remaining equation ...
$$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$
one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$
So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$
$endgroup$
add a comment |
$begingroup$
Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$
$$
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$
$$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$
for functions $f$ and $h$ to be determined by the remaining equation ...
$$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$
one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$
So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$
$endgroup$
add a comment |
$begingroup$
Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$
$$
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$
$$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$
for functions $f$ and $h$ to be determined by the remaining equation ...
$$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$
one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$
So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$
$endgroup$
Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$
$$
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$
$$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$
for functions $f$ and $h$ to be determined by the remaining equation ...
$$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$
one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$
So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$
edited Dec 28 '18 at 3:54
answered Dec 1 '15 at 0:50
WW1WW1
7,3151712
7,3151712
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1554001%2ffind-a-vector-field-g-with-curl-g-f%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown