Find a vector field $G$ with curl ($G$) = $F$












1












$begingroup$


Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
We know that
$$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$

How do I go further?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
    We know that
    $$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
    x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$

    How do I go further?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
      We know that
      $$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
      x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$

      How do I go further?










      share|cite|improve this question











      $endgroup$




      Let $F(x, y, z) = (y, z, x^2)$ on $mathbb{R}^3$.
      We know that
      $$y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}, \ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}, \
      x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}.$$

      How do I go further?







      multivariable-calculus vector-fields






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 1 '15 at 0:21







      user286826

















      asked Nov 30 '15 at 23:56









      user286826user286826

      443211




      443211






















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$



          $$
          x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$



          $$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$



          for functions $f$ and $h$ to be determined by the remaining equation ...



          $$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$



          one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$



          So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$






          share|cite|improve this answer











          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1554001%2ffind-a-vector-field-g-with-curl-g-f%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$



            $$
            x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$



            $$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$



            for functions $f$ and $h$ to be determined by the remaining equation ...



            $$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$



            one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$



            So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$






            share|cite|improve this answer











            $endgroup$


















              4












              $begingroup$

              Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$



              $$
              x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$



              $$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$



              for functions $f$ and $h$ to be determined by the remaining equation ...



              $$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$



              one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$



              So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$






              share|cite|improve this answer











              $endgroup$
















                4












                4








                4





                $begingroup$

                Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$



                $$
                x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$



                $$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$



                for functions $f$ and $h$ to be determined by the remaining equation ...



                $$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$



                one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$



                So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$






                share|cite|improve this answer











                $endgroup$



                Knowing that $vec G(x,y,z)=(G_1(x,y,z),G_2(x,y,z),G_3(x,y,z))$ can only be determined up to a gradient of a scalar function, we can without loss of generality take $ G_1(x,y,z)=0$



                $$
                x^2 = frac{partial G_2}{ partial x} - frac{partial G_1 }{partial y}. implies G_2(x,y,z) = frac 13 x^3+f(y,z)$$



                $$ z = frac{partial G_1}{ partial z} - frac{partial G_3 }{partial x}implies G_3(x,y,z) =-xz+h(y)$$



                for functions $f$ and $h$ to be determined by the remaining equation ...



                $$ y = frac{partial G_3}{ partial y} - frac{partial G_2 }{partial z}implies frac{partial h(y)}{partial y}-frac{partial f(y,z)}{partial z}=y $$



                one solution that clearly works is $h(y)=frac 12 y^2$ and $f(x,y)=0$



                So $vec G(x,y,z)=(0, frac 13 x^3 + frac 12 y^2, -xz)$ is a vector field satisfying $vecnabla times vec G(x,y,z)=(y, z, x^2)$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 28 '18 at 3:54

























                answered Dec 1 '15 at 0:50









                WW1WW1

                7,3151712




                7,3151712






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1554001%2ffind-a-vector-field-g-with-curl-g-f%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Bressuire

                    Cabo Verde

                    Gyllenstierna