Finding an estimator for a binomial parameter using the method of moments












0












$begingroup$


A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?



I got :



$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$



$$1-p=frac{141.875}{139}$$



$$p=-0.021$$



It's negative so I think it's not correct. Can you help me to solve this?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    please, show your work
    $endgroup$
    – Martín Vacas Vignolo
    Dec 28 '18 at 5:27






  • 1




    $begingroup$
    Here's a MathJax tutorial :)
    $endgroup$
    – Shaun
    Dec 28 '18 at 5:59






  • 1




    $begingroup$
    You know $np=frac{139}8$ and $n=100$,so $p=ldots $
    $endgroup$
    – Thomas Shelby
    Dec 28 '18 at 6:01










  • $begingroup$
    So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
    $endgroup$
    – Monika_j22
    Dec 28 '18 at 6:49


















0












$begingroup$


A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?



I got :



$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$



$$1-p=frac{141.875}{139}$$



$$p=-0.021$$



It's negative so I think it's not correct. Can you help me to solve this?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    please, show your work
    $endgroup$
    – Martín Vacas Vignolo
    Dec 28 '18 at 5:27






  • 1




    $begingroup$
    Here's a MathJax tutorial :)
    $endgroup$
    – Shaun
    Dec 28 '18 at 5:59






  • 1




    $begingroup$
    You know $np=frac{139}8$ and $n=100$,so $p=ldots $
    $endgroup$
    – Thomas Shelby
    Dec 28 '18 at 6:01










  • $begingroup$
    So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
    $endgroup$
    – Monika_j22
    Dec 28 '18 at 6:49
















0












0








0





$begingroup$


A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?



I got :



$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$



$$1-p=frac{141.875}{139}$$



$$p=-0.021$$



It's negative so I think it's not correct. Can you help me to solve this?










share|cite|improve this question











$endgroup$




A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?



I got :



$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$



$$1-p=frac{141.875}{139}$$



$$p=-0.021$$



It's negative so I think it's not correct. Can you help me to solve this?







probability






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 28 '18 at 9:20









Jean Marie

29.9k42051




29.9k42051










asked Dec 28 '18 at 5:15









Monika_j22Monika_j22

61




61








  • 1




    $begingroup$
    please, show your work
    $endgroup$
    – Martín Vacas Vignolo
    Dec 28 '18 at 5:27






  • 1




    $begingroup$
    Here's a MathJax tutorial :)
    $endgroup$
    – Shaun
    Dec 28 '18 at 5:59






  • 1




    $begingroup$
    You know $np=frac{139}8$ and $n=100$,so $p=ldots $
    $endgroup$
    – Thomas Shelby
    Dec 28 '18 at 6:01










  • $begingroup$
    So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
    $endgroup$
    – Monika_j22
    Dec 28 '18 at 6:49
















  • 1




    $begingroup$
    please, show your work
    $endgroup$
    – Martín Vacas Vignolo
    Dec 28 '18 at 5:27






  • 1




    $begingroup$
    Here's a MathJax tutorial :)
    $endgroup$
    – Shaun
    Dec 28 '18 at 5:59






  • 1




    $begingroup$
    You know $np=frac{139}8$ and $n=100$,so $p=ldots $
    $endgroup$
    – Thomas Shelby
    Dec 28 '18 at 6:01










  • $begingroup$
    So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
    $endgroup$
    – Monika_j22
    Dec 28 '18 at 6:49










1




1




$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27




$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27




1




1




$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59




$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59




1




1




$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01




$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01












$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49






$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49












1 Answer
1






active

oldest

votes


















1












$begingroup$

$n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.



We can recover $hat{p}$ by



$$100hat{p} = frac18 sum_{i=1}^8 x_i$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054592%2ffinding-an-estimator-for-a-binomial-parameter-using-the-method-of-moments%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    $n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.



    We can recover $hat{p}$ by



    $$100hat{p} = frac18 sum_{i=1}^8 x_i$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      $n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.



      We can recover $hat{p}$ by



      $$100hat{p} = frac18 sum_{i=1}^8 x_i$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        $n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.



        We can recover $hat{p}$ by



        $$100hat{p} = frac18 sum_{i=1}^8 x_i$$






        share|cite|improve this answer









        $endgroup$



        $n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.



        We can recover $hat{p}$ by



        $$100hat{p} = frac18 sum_{i=1}^8 x_i$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Dec 28 '18 at 7:51









        Siong Thye GohSiong Thye Goh

        101k1466118




        101k1466118






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054592%2ffinding-an-estimator-for-a-binomial-parameter-using-the-method-of-moments%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Cabo Verde

            Gyllenstierna