Finding an estimator for a binomial parameter using the method of moments
$begingroup$
A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?
I got :
$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$
$$1-p=frac{141.875}{139}$$
$$p=-0.021$$
It's negative so I think it's not correct. Can you help me to solve this?
probability
$endgroup$
add a comment |
$begingroup$
A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?
I got :
$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$
$$1-p=frac{141.875}{139}$$
$$p=-0.021$$
It's negative so I think it's not correct. Can you help me to solve this?
probability
$endgroup$
1
$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27
1
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59
1
$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01
$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49
add a comment |
$begingroup$
A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?
I got :
$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$
$$1-p=frac{141.875}{139}$$
$$p=-0.021$$
It's negative so I think it's not correct. Can you help me to solve this?
probability
$endgroup$
A random variable subject to binomial distribution $B(100,p)$.Find estimator of $p$ using method of moment.The values $x :14,13,17,15,20,25,13,22$?
I got :
$$Ex=np=frac{139}8$$
$$Vx=np (1-p)=frac{sum(x-Ex)^2}8=141.875/8$$
$$1-p=frac{141.875}{139}$$
$$p=-0.021$$
It's negative so I think it's not correct. Can you help me to solve this?
probability
probability
edited Dec 28 '18 at 9:20
Jean Marie
29.9k42051
29.9k42051
asked Dec 28 '18 at 5:15
Monika_j22Monika_j22
61
61
1
$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27
1
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59
1
$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01
$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49
add a comment |
1
$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27
1
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59
1
$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01
$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49
1
1
$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27
$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27
1
1
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59
1
1
$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01
$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01
$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49
$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.
We can recover $hat{p}$ by
$$100hat{p} = frac18 sum_{i=1}^8 x_i$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054592%2ffinding-an-estimator-for-a-binomial-parameter-using-the-method-of-moments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.
We can recover $hat{p}$ by
$$100hat{p} = frac18 sum_{i=1}^8 x_i$$
$endgroup$
add a comment |
$begingroup$
$n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.
We can recover $hat{p}$ by
$$100hat{p} = frac18 sum_{i=1}^8 x_i$$
$endgroup$
add a comment |
$begingroup$
$n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.
We can recover $hat{p}$ by
$$100hat{p} = frac18 sum_{i=1}^8 x_i$$
$endgroup$
$n=100$ has been given to you in the question, there is only one unknown parameter $p$ and we can get an estimator from the first moment.
We can recover $hat{p}$ by
$$100hat{p} = frac18 sum_{i=1}^8 x_i$$
answered Dec 28 '18 at 7:51
Siong Thye GohSiong Thye Goh
101k1466118
101k1466118
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3054592%2ffinding-an-estimator-for-a-binomial-parameter-using-the-method-of-moments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
please, show your work
$endgroup$
– Martín Vacas Vignolo
Dec 28 '18 at 5:27
1
$begingroup$
Here's a MathJax tutorial :)
$endgroup$
– Shaun
Dec 28 '18 at 5:59
1
$begingroup$
You know $np=frac{139}8$ and $n=100$,so $p=ldots $
$endgroup$
– Thomas Shelby
Dec 28 '18 at 6:01
$begingroup$
So I do not need to find Vx? So p=0.17375?why we Do not find estimator of n?
$endgroup$
– Monika_j22
Dec 28 '18 at 6:49