From Hessian to Lipschitz continuity
$begingroup$
Let $f$ be convex and twice differentiable. I can't prove that
$$
nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
$$
I only established the converse.
edit:
There exists a $zintext{conv}{x,y}$ such that
$$
nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
$$
By multiplying on the left by $(y-x)^T$ we get
$$
begin{align}
(y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
&leq (y-x)^T nabla f(x) + L||y-x||_2^2
end{align}
$$
Now how do we prove that
$$
(nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
$$
I think I'm missing something very easy.
convex-analysis
$endgroup$
add a comment |
$begingroup$
Let $f$ be convex and twice differentiable. I can't prove that
$$
nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
$$
I only established the converse.
edit:
There exists a $zintext{conv}{x,y}$ such that
$$
nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
$$
By multiplying on the left by $(y-x)^T$ we get
$$
begin{align}
(y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
&leq (y-x)^T nabla f(x) + L||y-x||_2^2
end{align}
$$
Now how do we prove that
$$
(nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
$$
I think I'm missing something very easy.
convex-analysis
$endgroup$
add a comment |
$begingroup$
Let $f$ be convex and twice differentiable. I can't prove that
$$
nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
$$
I only established the converse.
edit:
There exists a $zintext{conv}{x,y}$ such that
$$
nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
$$
By multiplying on the left by $(y-x)^T$ we get
$$
begin{align}
(y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
&leq (y-x)^T nabla f(x) + L||y-x||_2^2
end{align}
$$
Now how do we prove that
$$
(nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
$$
I think I'm missing something very easy.
convex-analysis
$endgroup$
Let $f$ be convex and twice differentiable. I can't prove that
$$
nabla^2f(x)preceq LI implies ||nabla f(x)-nabla f(y)||_2leq L||x-y||_2
$$
I only established the converse.
edit:
There exists a $zintext{conv}{x,y}$ such that
$$
nabla f(y) = nabla f(x) + nabla^2 f(z)(y-x)
$$
By multiplying on the left by $(y-x)^T$ we get
$$
begin{align}
(y-x)^T nabla f(y) &= (y-x)^T nabla f(x) + (y-x)^T nabla^2 f(z)(y-x)\
&leq (y-x)^T nabla f(x) + L||y-x||_2^2
end{align}
$$
Now how do we prove that
$$
(nabla f(y) - nabla f(x))^T (y-x) leq L||y-x||_2^2 implies nabla ftext{ is }Ltext{-lipschitz continuous}?
$$
I think I'm missing something very easy.
convex-analysis
convex-analysis
edited May 23 '17 at 12:26
Kiuhnm
asked May 23 '17 at 1:24
KiuhnmKiuhnm
361210
361210
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
begin{align}
|nabla f(y) - nabla f(x)|
&=
|g(1) - g(0)|
\
&= left| int_0^1 g'(t) mathop{dt}right|
\
&le int_0^1 |g'(t)| mathop{dt}
\
&= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
\
&le int_0^1 L |x-y| mathop{dt}
\
&= L|x-y|.
end{align}
$endgroup$
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
1
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
1
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2292769%2ffrom-hessian-to-lipschitz-continuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
begin{align}
|nabla f(y) - nabla f(x)|
&=
|g(1) - g(0)|
\
&= left| int_0^1 g'(t) mathop{dt}right|
\
&le int_0^1 |g'(t)| mathop{dt}
\
&= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
\
&le int_0^1 L |x-y| mathop{dt}
\
&= L|x-y|.
end{align}
$endgroup$
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
1
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
1
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
add a comment |
$begingroup$
Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
begin{align}
|nabla f(y) - nabla f(x)|
&=
|g(1) - g(0)|
\
&= left| int_0^1 g'(t) mathop{dt}right|
\
&le int_0^1 |g'(t)| mathop{dt}
\
&= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
\
&le int_0^1 L |x-y| mathop{dt}
\
&= L|x-y|.
end{align}
$endgroup$
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
1
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
1
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
add a comment |
$begingroup$
Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
begin{align}
|nabla f(y) - nabla f(x)|
&=
|g(1) - g(0)|
\
&= left| int_0^1 g'(t) mathop{dt}right|
\
&le int_0^1 |g'(t)| mathop{dt}
\
&= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
\
&le int_0^1 L |x-y| mathop{dt}
\
&= L|x-y|.
end{align}
$endgroup$
Let $g(t) = nabla f(y + t(x-y))$ and note $g'(t) = [nabla^2 f(y + t(x-y))] (x-y)$. By the fundamental theorem of calculus,
begin{align}
|nabla f(y) - nabla f(x)|
&=
|g(1) - g(0)|
\
&= left| int_0^1 g'(t) mathop{dt}right|
\
&le int_0^1 |g'(t)| mathop{dt}
\
&= int_0^1 |[nabla^2 f(y + t(x-y))] (x-y)| mathop{dt}
\
&le int_0^1 L |x-y| mathop{dt}
\
&= L|x-y|.
end{align}
answered May 23 '17 at 21:36
angryavianangryavian
41.4k23380
41.4k23380
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
1
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
1
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
add a comment |
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
1
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
1
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
$begingroup$
What property do you use for the last $leq$? Thanks.
$endgroup$
– Kiuhnm
May 23 '17 at 23:06
1
1
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
@Kiuhnm Use $nabla^2 f(y+t(x-y)) preceq LI$.
$endgroup$
– angryavian
May 23 '17 at 23:21
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
$begingroup$
Yes, but are you using $|Ax|leq |A||x|$? Is this always true?
$endgroup$
– Kiuhnm
May 24 '17 at 0:12
1
1
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
$begingroup$
Since $f$ is convex, the eigenvalues of $nabla^2 f(u)$ are nonnegative. The condition $preceq LI$ means the eigenvalues are upper bounded by $L$. Thus the operator norm of the Hessian is $le L$.
$endgroup$
– angryavian
May 24 '17 at 1:33
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2292769%2ffrom-hessian-to-lipschitz-continuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown