Computing $ E[Y^2] $ when $Y$ is a piecewise function of $X sim Pois(2) $












0














$ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $



compute $ E[Y^2] $ ?



I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?



Any suggestions?










share|cite|improve this question





























    0














    $ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $



    compute $ E[Y^2] $ ?



    I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?



    Any suggestions?










    share|cite|improve this question



























      0












      0








      0







      $ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $



      compute $ E[Y^2] $ ?



      I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?



      Any suggestions?










      share|cite|improve this question















      $ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $



      compute $ E[Y^2] $ ?



      I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?



      Any suggestions?







      probability poisson-distribution






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 9 at 16:59









      Nate Eldredge

      62.2k681169




      62.2k681169










      asked Dec 9 at 16:37









      bm1125

      60516




      60516






















          2 Answers
          2






          active

          oldest

          votes


















          1














          $Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$



          If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
          $$begin{align*}operatorname{E}[Y^2]
          &= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
          &= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
          &= 66e^{-2} + lambda^2 + lambda \
          &= 6 + 66e^{-2}.
          end{align*}$$






          share|cite|improve this answer























          • Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
            – bm1125
            Dec 9 at 17:02










          • @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
            – heropup
            Dec 9 at 17:07



















          1














          begin{align}
          E[Y^2]
          &= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
          &=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
          &= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
          end{align}






          share|cite|improve this answer























          • Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
            – bm1125
            Dec 9 at 16:55






          • 1




            All of the summations should be with respect to $x$.
            – heropup
            Dec 9 at 17:00










          • oops, i made lots of typos, thanks.
            – Siong Thye Goh
            Dec 9 at 17:00










          • I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
            – Siong Thye Goh
            Dec 9 at 17:02













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032584%2fcomputing-ey2-when-y-is-a-piecewise-function-of-x-sim-pois2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1














          $Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$



          If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
          $$begin{align*}operatorname{E}[Y^2]
          &= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
          &= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
          &= 66e^{-2} + lambda^2 + lambda \
          &= 6 + 66e^{-2}.
          end{align*}$$






          share|cite|improve this answer























          • Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
            – bm1125
            Dec 9 at 17:02










          • @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
            – heropup
            Dec 9 at 17:07
















          1














          $Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$



          If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
          $$begin{align*}operatorname{E}[Y^2]
          &= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
          &= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
          &= 66e^{-2} + lambda^2 + lambda \
          &= 6 + 66e^{-2}.
          end{align*}$$






          share|cite|improve this answer























          • Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
            – bm1125
            Dec 9 at 17:02










          • @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
            – heropup
            Dec 9 at 17:07














          1












          1








          1






          $Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$



          If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
          $$begin{align*}operatorname{E}[Y^2]
          &= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
          &= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
          &= 66e^{-2} + lambda^2 + lambda \
          &= 6 + 66e^{-2}.
          end{align*}$$






          share|cite|improve this answer














          $Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$



          If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
          $$begin{align*}operatorname{E}[Y^2]
          &= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
          &= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
          &= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
          &= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
          &= 66e^{-2} + lambda^2 + lambda \
          &= 6 + 66e^{-2}.
          end{align*}$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 9 at 17:06

























          answered Dec 9 at 16:54









          heropup

          62.5k66099




          62.5k66099












          • Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
            – bm1125
            Dec 9 at 17:02










          • @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
            – heropup
            Dec 9 at 17:07


















          • Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
            – bm1125
            Dec 9 at 17:02










          • @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
            – heropup
            Dec 9 at 17:07
















          Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
          – bm1125
          Dec 9 at 17:02




          Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
          – bm1125
          Dec 9 at 17:02












          @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
          – heropup
          Dec 9 at 17:07




          @bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
          – heropup
          Dec 9 at 17:07











          1














          begin{align}
          E[Y^2]
          &= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
          &=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
          &= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
          end{align}






          share|cite|improve this answer























          • Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
            – bm1125
            Dec 9 at 16:55






          • 1




            All of the summations should be with respect to $x$.
            – heropup
            Dec 9 at 17:00










          • oops, i made lots of typos, thanks.
            – Siong Thye Goh
            Dec 9 at 17:00










          • I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
            – Siong Thye Goh
            Dec 9 at 17:02


















          1














          begin{align}
          E[Y^2]
          &= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
          &=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
          &= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
          end{align}






          share|cite|improve this answer























          • Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
            – bm1125
            Dec 9 at 16:55






          • 1




            All of the summations should be with respect to $x$.
            – heropup
            Dec 9 at 17:00










          • oops, i made lots of typos, thanks.
            – Siong Thye Goh
            Dec 9 at 17:00










          • I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
            – Siong Thye Goh
            Dec 9 at 17:02
















          1












          1








          1






          begin{align}
          E[Y^2]
          &= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
          &=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
          &= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
          end{align}






          share|cite|improve this answer














          begin{align}
          E[Y^2]
          &= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
          &=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
          &=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
          &= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
          end{align}







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Dec 9 at 17:00

























          answered Dec 9 at 16:46









          Siong Thye Goh

          99.1k1464117




          99.1k1464117












          • Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
            – bm1125
            Dec 9 at 16:55






          • 1




            All of the summations should be with respect to $x$.
            – heropup
            Dec 9 at 17:00










          • oops, i made lots of typos, thanks.
            – Siong Thye Goh
            Dec 9 at 17:00










          • I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
            – Siong Thye Goh
            Dec 9 at 17:02




















          • Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
            – bm1125
            Dec 9 at 16:55






          • 1




            All of the summations should be with respect to $x$.
            – heropup
            Dec 9 at 17:00










          • oops, i made lots of typos, thanks.
            – Siong Thye Goh
            Dec 9 at 17:00










          • I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
            – Siong Thye Goh
            Dec 9 at 17:02


















          Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
          – bm1125
          Dec 9 at 16:55




          Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
          – bm1125
          Dec 9 at 16:55




          1




          1




          All of the summations should be with respect to $x$.
          – heropup
          Dec 9 at 17:00




          All of the summations should be with respect to $x$.
          – heropup
          Dec 9 at 17:00












          oops, i made lots of typos, thanks.
          – Siong Thye Goh
          Dec 9 at 17:00




          oops, i made lots of typos, thanks.
          – Siong Thye Goh
          Dec 9 at 17:00












          I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
          – Siong Thye Goh
          Dec 9 at 17:02






          I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
          – Siong Thye Goh
          Dec 9 at 17:02




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032584%2fcomputing-ey2-when-y-is-a-piecewise-function-of-x-sim-pois2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Cabo Verde

          Gyllenstierna