Computing $ E[Y^2] $ when $Y$ is a piecewise function of $X sim Pois(2) $
$ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $
compute $ E[Y^2] $ ?
I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?
Any suggestions?
probability poisson-distribution
add a comment |
$ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $
compute $ E[Y^2] $ ?
I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?
Any suggestions?
probability poisson-distribution
add a comment |
$ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $
compute $ E[Y^2] $ ?
I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?
Any suggestions?
probability poisson-distribution
$ X sim Pois(2) $ and let$ Y $ be a random variable : $ Y = begin{cases} 2X , X le 3 \ X , X ge 4 end{cases} $
compute $ E[Y^2] $ ?
I have calculated that $ E[Y] = E[X] + 10e^{-2} $ and I have the identity $ Var(X) = E[X^2] - (E[X])^2 $ and because $ X $ is poisson then $ Var(X) = E[X] $. but I'm not sure if $ Y $ is also a poisson variable?
Any suggestions?
probability poisson-distribution
probability poisson-distribution
edited Dec 9 at 16:59
Nate Eldredge
62.2k681169
62.2k681169
asked Dec 9 at 16:37
bm1125
60516
60516
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$
If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
$$begin{align*}operatorname{E}[Y^2]
&= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
&= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
&= 66e^{-2} + lambda^2 + lambda \
&= 6 + 66e^{-2}.
end{align*}$$
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
add a comment |
begin{align}
E[Y^2]
&= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
&=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
&= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
end{align}
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
1
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032584%2fcomputing-ey2-when-y-is-a-piecewise-function-of-x-sim-pois2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$
If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
$$begin{align*}operatorname{E}[Y^2]
&= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
&= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
&= 66e^{-2} + lambda^2 + lambda \
&= 6 + 66e^{-2}.
end{align*}$$
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
add a comment |
$Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$
If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
$$begin{align*}operatorname{E}[Y^2]
&= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
&= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
&= 66e^{-2} + lambda^2 + lambda \
&= 6 + 66e^{-2}.
end{align*}$$
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
add a comment |
$Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$
If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
$$begin{align*}operatorname{E}[Y^2]
&= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
&= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
&= 66e^{-2} + lambda^2 + lambda \
&= 6 + 66e^{-2}.
end{align*}$$
$Y$ cannot be Poisson, because for example, $$Pr[Y = 3] = Pr[2X = 3] = Pr[X = 3/2] = 0.$$
If we define $Y$ as in the body of the post, i.e. $$Y = begin{cases} 2X, & X le 3 \ X, & X ge 4, end{cases}$$ then we note that
$$begin{align*}operatorname{E}[Y^2]
&= sum_{x=0}^3 (2x)^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 4 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + left(sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=4}^infty x^2 e^{-lambda} frac{lambda^x}{x!} right) \
&= 3 sum_{x=0}^3 x^2 e^{-lambda} frac{lambda^x}{x!} + sum_{x=0}^infty x^2 e^{-lambda} frac{lambda^x}{x!} \
&= e^{-lambda} (3lambda + 6 lambda^2 + tfrac{9}{2} lambda^3) + operatorname{E}[X^2] \
&= 66e^{-2} + operatorname{E}[X]^2 + operatorname{Var}[X] \
&= 66e^{-2} + lambda^2 + lambda \
&= 6 + 66e^{-2}.
end{align*}$$
edited Dec 9 at 17:06
answered Dec 9 at 16:54
heropup
62.5k66099
62.5k66099
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
add a comment |
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
Could you explain to me why $ (2x)^2 $ becomes $ 3x^2 $ ?
– bm1125
Dec 9 at 17:02
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
@bm1125 I have expanded the details of that calculation in my edit, but simply put, $4 = 3 + 1.$
– heropup
Dec 9 at 17:07
add a comment |
begin{align}
E[Y^2]
&= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
&=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
&= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
end{align}
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
1
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
add a comment |
begin{align}
E[Y^2]
&= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
&=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
&= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
end{align}
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
1
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
add a comment |
begin{align}
E[Y^2]
&= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
&=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
&= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
end{align}
begin{align}
E[Y^2]
&= sum_{x=0}^3 (2x)^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 4x^2 Pr(X=x)+ sum_{x=4}^infty x^2 Pr(X=x)\
&=sum_{x=0}^3 3x^2 Pr(X=x)+ sum_{x=0}^infty x^2 Pr(X=x)\
&=3sum_{x=1}^3 x^2 Pr(X=x)+ E[X^2]\
&= 3left( Pr(X=1) + 4Pr(X=2)+9Pr(X=3) right) + E[X^2]
end{align}
edited Dec 9 at 17:00
answered Dec 9 at 16:46
Siong Thye Goh
99.1k1464117
99.1k1464117
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
1
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
add a comment |
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
1
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
Thanks for your answer! could you explain the second equality? I think you also miss the fact that $ P{X=6} not = P{Y=6} $ as $ P{Y=6} = P{X=3} + P{X=6} $ I believe.
– bm1125
Dec 9 at 16:55
1
1
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
All of the summations should be with respect to $x$.
– heropup
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
oops, i made lots of typos, thanks.
– Siong Thye Goh
Dec 9 at 17:00
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
I use the law of the unconscious statistician $E[g(X)]=sum_x g(x)P(X=x)$. For the line from $4x^$ to $3x^2$, we pass a copy of $x^2$ to the second term, hence there is change of the index.
– Siong Thye Goh
Dec 9 at 17:02
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3032584%2fcomputing-ey2-when-y-is-a-piecewise-function-of-x-sim-pois2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown