How to show that $int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx =frac{pi}{8}$












3












$begingroup$


I was reading Advanced Integration Techniques, and found that$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx =frac{pi}{8}$$



The book provides one method using residue theorem and Laurent expansion. However, I wonder if there are other techniques that I can use to evaluate this integral.



The most direct method would be solving the integral and plug in the limits.
$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx = left[frac{arcsin(2x-1)+sqrt{(1-x)x}(4x-2)}{8}right]_{0}^{1}=frac{pi}{8}$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Beta function?${}$
    $endgroup$
    – Lord Shark the Unknown
    Dec 31 '18 at 18:16






  • 3




    $begingroup$
    Maybe you know it, but it's worth to note that it's a particular case of the beta integral.
    $endgroup$
    – Madarb
    Dec 31 '18 at 18:17






  • 3




    $begingroup$
    $sqrt{x}sqrt{1-x} = sqrt{x-x^2} = sqrt{frac{1}{4}-left(x-frac{1}{2}right)^2}$; substitute $u = x-frac{1}{2}$.
    $endgroup$
    – rogerl
    Dec 31 '18 at 18:18






  • 2




    $begingroup$
    $Bleft( frac 32,frac 32right)$ ?
    $endgroup$
    – Darkrai
    Jan 1 at 4:18












  • $begingroup$
    Well, solving a more general problem we can show that (when $text{n}>0$): $$mathcal{I}_text{n}:=int_0^text{n}sqrt{x}cdotsqrt{text{n}-x}spacetext{d}x=frac{pi}{8}cdottext{n}^2tag1$$
    $endgroup$
    – Jan
    Jan 1 at 16:14
















3












$begingroup$


I was reading Advanced Integration Techniques, and found that$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx =frac{pi}{8}$$



The book provides one method using residue theorem and Laurent expansion. However, I wonder if there are other techniques that I can use to evaluate this integral.



The most direct method would be solving the integral and plug in the limits.
$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx = left[frac{arcsin(2x-1)+sqrt{(1-x)x}(4x-2)}{8}right]_{0}^{1}=frac{pi}{8}$$










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Beta function?${}$
    $endgroup$
    – Lord Shark the Unknown
    Dec 31 '18 at 18:16






  • 3




    $begingroup$
    Maybe you know it, but it's worth to note that it's a particular case of the beta integral.
    $endgroup$
    – Madarb
    Dec 31 '18 at 18:17






  • 3




    $begingroup$
    $sqrt{x}sqrt{1-x} = sqrt{x-x^2} = sqrt{frac{1}{4}-left(x-frac{1}{2}right)^2}$; substitute $u = x-frac{1}{2}$.
    $endgroup$
    – rogerl
    Dec 31 '18 at 18:18






  • 2




    $begingroup$
    $Bleft( frac 32,frac 32right)$ ?
    $endgroup$
    – Darkrai
    Jan 1 at 4:18












  • $begingroup$
    Well, solving a more general problem we can show that (when $text{n}>0$): $$mathcal{I}_text{n}:=int_0^text{n}sqrt{x}cdotsqrt{text{n}-x}spacetext{d}x=frac{pi}{8}cdottext{n}^2tag1$$
    $endgroup$
    – Jan
    Jan 1 at 16:14














3












3








3


3



$begingroup$


I was reading Advanced Integration Techniques, and found that$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx =frac{pi}{8}$$



The book provides one method using residue theorem and Laurent expansion. However, I wonder if there are other techniques that I can use to evaluate this integral.



The most direct method would be solving the integral and plug in the limits.
$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx = left[frac{arcsin(2x-1)+sqrt{(1-x)x}(4x-2)}{8}right]_{0}^{1}=frac{pi}{8}$$










share|cite|improve this question











$endgroup$




I was reading Advanced Integration Techniques, and found that$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx =frac{pi}{8}$$



The book provides one method using residue theorem and Laurent expansion. However, I wonder if there are other techniques that I can use to evaluate this integral.



The most direct method would be solving the integral and plug in the limits.
$$int_{0}^{1}sqrt{x}sqrt{1-x},mathrm dx = left[frac{arcsin(2x-1)+sqrt{(1-x)x}(4x-2)}{8}right]_{0}^{1}=frac{pi}{8}$$







real-analysis calculus integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 31 '18 at 18:50









Michael Rozenberg

106k1893198




106k1893198










asked Dec 31 '18 at 18:13









LarryLarry

2,41331129




2,41331129








  • 2




    $begingroup$
    Beta function?${}$
    $endgroup$
    – Lord Shark the Unknown
    Dec 31 '18 at 18:16






  • 3




    $begingroup$
    Maybe you know it, but it's worth to note that it's a particular case of the beta integral.
    $endgroup$
    – Madarb
    Dec 31 '18 at 18:17






  • 3




    $begingroup$
    $sqrt{x}sqrt{1-x} = sqrt{x-x^2} = sqrt{frac{1}{4}-left(x-frac{1}{2}right)^2}$; substitute $u = x-frac{1}{2}$.
    $endgroup$
    – rogerl
    Dec 31 '18 at 18:18






  • 2




    $begingroup$
    $Bleft( frac 32,frac 32right)$ ?
    $endgroup$
    – Darkrai
    Jan 1 at 4:18












  • $begingroup$
    Well, solving a more general problem we can show that (when $text{n}>0$): $$mathcal{I}_text{n}:=int_0^text{n}sqrt{x}cdotsqrt{text{n}-x}spacetext{d}x=frac{pi}{8}cdottext{n}^2tag1$$
    $endgroup$
    – Jan
    Jan 1 at 16:14














  • 2




    $begingroup$
    Beta function?${}$
    $endgroup$
    – Lord Shark the Unknown
    Dec 31 '18 at 18:16






  • 3




    $begingroup$
    Maybe you know it, but it's worth to note that it's a particular case of the beta integral.
    $endgroup$
    – Madarb
    Dec 31 '18 at 18:17






  • 3




    $begingroup$
    $sqrt{x}sqrt{1-x} = sqrt{x-x^2} = sqrt{frac{1}{4}-left(x-frac{1}{2}right)^2}$; substitute $u = x-frac{1}{2}$.
    $endgroup$
    – rogerl
    Dec 31 '18 at 18:18






  • 2




    $begingroup$
    $Bleft( frac 32,frac 32right)$ ?
    $endgroup$
    – Darkrai
    Jan 1 at 4:18












  • $begingroup$
    Well, solving a more general problem we can show that (when $text{n}>0$): $$mathcal{I}_text{n}:=int_0^text{n}sqrt{x}cdotsqrt{text{n}-x}spacetext{d}x=frac{pi}{8}cdottext{n}^2tag1$$
    $endgroup$
    – Jan
    Jan 1 at 16:14








2




2




$begingroup$
Beta function?${}$
$endgroup$
– Lord Shark the Unknown
Dec 31 '18 at 18:16




$begingroup$
Beta function?${}$
$endgroup$
– Lord Shark the Unknown
Dec 31 '18 at 18:16




3




3




$begingroup$
Maybe you know it, but it's worth to note that it's a particular case of the beta integral.
$endgroup$
– Madarb
Dec 31 '18 at 18:17




$begingroup$
Maybe you know it, but it's worth to note that it's a particular case of the beta integral.
$endgroup$
– Madarb
Dec 31 '18 at 18:17




3




3




$begingroup$
$sqrt{x}sqrt{1-x} = sqrt{x-x^2} = sqrt{frac{1}{4}-left(x-frac{1}{2}right)^2}$; substitute $u = x-frac{1}{2}$.
$endgroup$
– rogerl
Dec 31 '18 at 18:18




$begingroup$
$sqrt{x}sqrt{1-x} = sqrt{x-x^2} = sqrt{frac{1}{4}-left(x-frac{1}{2}right)^2}$; substitute $u = x-frac{1}{2}$.
$endgroup$
– rogerl
Dec 31 '18 at 18:18




2




2




$begingroup$
$Bleft( frac 32,frac 32right)$ ?
$endgroup$
– Darkrai
Jan 1 at 4:18






$begingroup$
$Bleft( frac 32,frac 32right)$ ?
$endgroup$
– Darkrai
Jan 1 at 4:18














$begingroup$
Well, solving a more general problem we can show that (when $text{n}>0$): $$mathcal{I}_text{n}:=int_0^text{n}sqrt{x}cdotsqrt{text{n}-x}spacetext{d}x=frac{pi}{8}cdottext{n}^2tag1$$
$endgroup$
– Jan
Jan 1 at 16:14




$begingroup$
Well, solving a more general problem we can show that (when $text{n}>0$): $$mathcal{I}_text{n}:=int_0^text{n}sqrt{x}cdotsqrt{text{n}-x}spacetext{d}x=frac{pi}{8}cdottext{n}^2tag1$$
$endgroup$
– Jan
Jan 1 at 16:14










4 Answers
4






active

oldest

votes


















19












$begingroup$

Write $x=sin^2 t$ so $dx=2sin tcos t dt$. Your integral becomes $$int_0^{pi/2}2sin^2 tcos^2 t dt=int_0^{pi/2}frac12 sin^2 2t dt=int_0^{pi/2}frac{1-cos 4t}{4}dt=left[frac{t}{4}-frac{1}{16}sin 4tright]_0^{pi/2}=frac{pi}{8}.$$






share|cite|improve this answer









$endgroup$





















    19












    $begingroup$

    Let $sqrt{x-x^2}=y$.



    Thus, $ygeq0$ and $$x^2-x+y^2=0$$ or
    $$left(x-frac{1}{2}right)^2+y^2=left(frac{1}{2}right)^2,$$ which is a semicircle with radius $frac{1}{2}.$



    Thus, our integral it's $$frac{1}{2}pileft(frac{1}{2}right)^2=frac{pi}{8}.$$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
      $endgroup$
      – Zacky
      Dec 31 '18 at 18:56










    • $begingroup$
      Yes, of course.
      $endgroup$
      – Michael Rozenberg
      Dec 31 '18 at 18:57






    • 2




      $begingroup$
      That is awesome! I learnt something new today.
      $endgroup$
      – Zacky
      Dec 31 '18 at 18:58



















    5












    $begingroup$

    Another technique just for fun (and in the meanwhile, happy new year!). We have
    $$ frac{1}{sqrt{1-x}}stackrel{L^2(0,1)}{=}2sum_{ngeq 1}P_n(2x-1) $$
    hence by Bonnet's recursion formulas and symmetry
    $$ sqrt{1-x}=2sum_{ngeq 0}frac{1}{(1-2n)(2n+3)}P_n(2x-1) $$
    $$ sqrt{x}=2sum_{ngeq 0}frac{(-1)^n}{(1-2n)(2n+3)}P_n(2x-1) $$
    and these FL expansions lead to
    $$ int_{0}^{1}sqrt{x(1-x)},dx = color{blue}{4sum_{ngeq 0}frac{(-1)^n}{(1-2n)^2 (2n+1)(2n+3)^2}}. $$
    Partial fraction decomposition and telescopic series convert the RHS into
    $$ frac{1}{2}sum_{ngeq 0}frac{(-1)^n}{2n+1} = frac{1}{2}int_{0}^{1}sum_{ngeq 0}(-1)^n x^{2n},dx = frac{1}{2}int_{0}^{1}frac{dx}{1+x^2}=frac{pi}{8}.$$
    As a by-product, we got a nice, rapidly convergent representation for $pi$ (eight times the blue one).





    Don't like the Legendre base of $L^2(0,1)$? Fine, let us go with the Chebyshev one (with respect to a different inner product). Our integral is
    $$ int_{0}^{1}x(1-x)frac{dx}{sqrt{x(1-x)}} $$
    and the orthogonality relation for the Chebyshev base is
    $$ int_{0}^{1}T_m(2x-1)T_n(2x-1)frac{dx}{sqrt{x(1-x)}}=frac{pi}{2}delta(m,n)(1+delta(m)). $$
    Since $x(1-x)$ decomposes as $color{blue}{frac{1}{8}}T_0(2x-1)-frac{1}{8}T_2(2x-1)$, the value of our integral is $frac{pi}{8}$.






    share|cite|improve this answer











    $endgroup$





















      4












      $begingroup$

      J.G. has the elementary method down. If you see a $1-x^2$ term inside your integrand, it might be wise to give a trig substitution a try. In this case, letting $x=sin^2theta$ works out beautifully.



      There’s another less elementary way by utilizing the beta function and the Gamma function. Let me know if you need a proof (I proudly have an elementary proof of it).




      Beta Function:$$operatorname{B}left(m,nright)=intlimits_0^1mathrm dx,x^{m-1}(1-x)^{n-1}=frac {Gamma(m)Gamma(n)}{Gamma(m+n)}$$




      The integral under question is then simply$$begin{align*}mathfrak{I} & =operatorname{B}left(frac 32,frac 32right)\ & =frac {1}{2}left(frac {sqrt{pi}}2right)^2end{align*}$$
      Thus$$intlimits_0^1mathrm dx, sqrt{x(1-x)}color{blue}{=frac {pi}8}$$






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        What's your proof?
        $endgroup$
        – Larry
        Dec 31 '18 at 20:00






      • 1




        $begingroup$
        @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
        $endgroup$
        – Jack D'Aurizio
        Jan 1 at 23:36










      • $begingroup$
        Ok, Frank said he has a elementary proof. I was curious about that
        $endgroup$
        – Larry
        Jan 2 at 0:36










      • $begingroup$
        @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
        $endgroup$
        – Jack D'Aurizio
        Jan 2 at 1:12










      • $begingroup$
        @Larry It’s just integration by parts.
        $endgroup$
        – Frank W.
        Jan 2 at 1:23











      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057924%2fhow-to-show-that-int-01-sqrtx-sqrt1-x-mathrm-dx-frac-pi8%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      19












      $begingroup$

      Write $x=sin^2 t$ so $dx=2sin tcos t dt$. Your integral becomes $$int_0^{pi/2}2sin^2 tcos^2 t dt=int_0^{pi/2}frac12 sin^2 2t dt=int_0^{pi/2}frac{1-cos 4t}{4}dt=left[frac{t}{4}-frac{1}{16}sin 4tright]_0^{pi/2}=frac{pi}{8}.$$






      share|cite|improve this answer









      $endgroup$


















        19












        $begingroup$

        Write $x=sin^2 t$ so $dx=2sin tcos t dt$. Your integral becomes $$int_0^{pi/2}2sin^2 tcos^2 t dt=int_0^{pi/2}frac12 sin^2 2t dt=int_0^{pi/2}frac{1-cos 4t}{4}dt=left[frac{t}{4}-frac{1}{16}sin 4tright]_0^{pi/2}=frac{pi}{8}.$$






        share|cite|improve this answer









        $endgroup$
















          19












          19








          19





          $begingroup$

          Write $x=sin^2 t$ so $dx=2sin tcos t dt$. Your integral becomes $$int_0^{pi/2}2sin^2 tcos^2 t dt=int_0^{pi/2}frac12 sin^2 2t dt=int_0^{pi/2}frac{1-cos 4t}{4}dt=left[frac{t}{4}-frac{1}{16}sin 4tright]_0^{pi/2}=frac{pi}{8}.$$






          share|cite|improve this answer









          $endgroup$



          Write $x=sin^2 t$ so $dx=2sin tcos t dt$. Your integral becomes $$int_0^{pi/2}2sin^2 tcos^2 t dt=int_0^{pi/2}frac12 sin^2 2t dt=int_0^{pi/2}frac{1-cos 4t}{4}dt=left[frac{t}{4}-frac{1}{16}sin 4tright]_0^{pi/2}=frac{pi}{8}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Dec 31 '18 at 18:20









          J.G.J.G.

          28.2k22844




          28.2k22844























              19












              $begingroup$

              Let $sqrt{x-x^2}=y$.



              Thus, $ygeq0$ and $$x^2-x+y^2=0$$ or
              $$left(x-frac{1}{2}right)^2+y^2=left(frac{1}{2}right)^2,$$ which is a semicircle with radius $frac{1}{2}.$



              Thus, our integral it's $$frac{1}{2}pileft(frac{1}{2}right)^2=frac{pi}{8}.$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:56










              • $begingroup$
                Yes, of course.
                $endgroup$
                – Michael Rozenberg
                Dec 31 '18 at 18:57






              • 2




                $begingroup$
                That is awesome! I learnt something new today.
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:58
















              19












              $begingroup$

              Let $sqrt{x-x^2}=y$.



              Thus, $ygeq0$ and $$x^2-x+y^2=0$$ or
              $$left(x-frac{1}{2}right)^2+y^2=left(frac{1}{2}right)^2,$$ which is a semicircle with radius $frac{1}{2}.$



              Thus, our integral it's $$frac{1}{2}pileft(frac{1}{2}right)^2=frac{pi}{8}.$$






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:56










              • $begingroup$
                Yes, of course.
                $endgroup$
                – Michael Rozenberg
                Dec 31 '18 at 18:57






              • 2




                $begingroup$
                That is awesome! I learnt something new today.
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:58














              19












              19








              19





              $begingroup$

              Let $sqrt{x-x^2}=y$.



              Thus, $ygeq0$ and $$x^2-x+y^2=0$$ or
              $$left(x-frac{1}{2}right)^2+y^2=left(frac{1}{2}right)^2,$$ which is a semicircle with radius $frac{1}{2}.$



              Thus, our integral it's $$frac{1}{2}pileft(frac{1}{2}right)^2=frac{pi}{8}.$$






              share|cite|improve this answer









              $endgroup$



              Let $sqrt{x-x^2}=y$.



              Thus, $ygeq0$ and $$x^2-x+y^2=0$$ or
              $$left(x-frac{1}{2}right)^2+y^2=left(frac{1}{2}right)^2,$$ which is a semicircle with radius $frac{1}{2}.$



              Thus, our integral it's $$frac{1}{2}pileft(frac{1}{2}right)^2=frac{pi}{8}.$$







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Dec 31 '18 at 18:45









              Michael RozenbergMichael Rozenberg

              106k1893198




              106k1893198












              • $begingroup$
                It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:56










              • $begingroup$
                Yes, of course.
                $endgroup$
                – Michael Rozenberg
                Dec 31 '18 at 18:57






              • 2




                $begingroup$
                That is awesome! I learnt something new today.
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:58


















              • $begingroup$
                It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:56










              • $begingroup$
                Yes, of course.
                $endgroup$
                – Michael Rozenberg
                Dec 31 '18 at 18:57






              • 2




                $begingroup$
                That is awesome! I learnt something new today.
                $endgroup$
                – Zacky
                Dec 31 '18 at 18:58
















              $begingroup$
              It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
              $endgroup$
              – Zacky
              Dec 31 '18 at 18:56




              $begingroup$
              It's a semicircle since $y>=0$ makes the domain to be only the upper semi-plane, right?
              $endgroup$
              – Zacky
              Dec 31 '18 at 18:56












              $begingroup$
              Yes, of course.
              $endgroup$
              – Michael Rozenberg
              Dec 31 '18 at 18:57




              $begingroup$
              Yes, of course.
              $endgroup$
              – Michael Rozenberg
              Dec 31 '18 at 18:57




              2




              2




              $begingroup$
              That is awesome! I learnt something new today.
              $endgroup$
              – Zacky
              Dec 31 '18 at 18:58




              $begingroup$
              That is awesome! I learnt something new today.
              $endgroup$
              – Zacky
              Dec 31 '18 at 18:58











              5












              $begingroup$

              Another technique just for fun (and in the meanwhile, happy new year!). We have
              $$ frac{1}{sqrt{1-x}}stackrel{L^2(0,1)}{=}2sum_{ngeq 1}P_n(2x-1) $$
              hence by Bonnet's recursion formulas and symmetry
              $$ sqrt{1-x}=2sum_{ngeq 0}frac{1}{(1-2n)(2n+3)}P_n(2x-1) $$
              $$ sqrt{x}=2sum_{ngeq 0}frac{(-1)^n}{(1-2n)(2n+3)}P_n(2x-1) $$
              and these FL expansions lead to
              $$ int_{0}^{1}sqrt{x(1-x)},dx = color{blue}{4sum_{ngeq 0}frac{(-1)^n}{(1-2n)^2 (2n+1)(2n+3)^2}}. $$
              Partial fraction decomposition and telescopic series convert the RHS into
              $$ frac{1}{2}sum_{ngeq 0}frac{(-1)^n}{2n+1} = frac{1}{2}int_{0}^{1}sum_{ngeq 0}(-1)^n x^{2n},dx = frac{1}{2}int_{0}^{1}frac{dx}{1+x^2}=frac{pi}{8}.$$
              As a by-product, we got a nice, rapidly convergent representation for $pi$ (eight times the blue one).





              Don't like the Legendre base of $L^2(0,1)$? Fine, let us go with the Chebyshev one (with respect to a different inner product). Our integral is
              $$ int_{0}^{1}x(1-x)frac{dx}{sqrt{x(1-x)}} $$
              and the orthogonality relation for the Chebyshev base is
              $$ int_{0}^{1}T_m(2x-1)T_n(2x-1)frac{dx}{sqrt{x(1-x)}}=frac{pi}{2}delta(m,n)(1+delta(m)). $$
              Since $x(1-x)$ decomposes as $color{blue}{frac{1}{8}}T_0(2x-1)-frac{1}{8}T_2(2x-1)$, the value of our integral is $frac{pi}{8}$.






              share|cite|improve this answer











              $endgroup$


















                5












                $begingroup$

                Another technique just for fun (and in the meanwhile, happy new year!). We have
                $$ frac{1}{sqrt{1-x}}stackrel{L^2(0,1)}{=}2sum_{ngeq 1}P_n(2x-1) $$
                hence by Bonnet's recursion formulas and symmetry
                $$ sqrt{1-x}=2sum_{ngeq 0}frac{1}{(1-2n)(2n+3)}P_n(2x-1) $$
                $$ sqrt{x}=2sum_{ngeq 0}frac{(-1)^n}{(1-2n)(2n+3)}P_n(2x-1) $$
                and these FL expansions lead to
                $$ int_{0}^{1}sqrt{x(1-x)},dx = color{blue}{4sum_{ngeq 0}frac{(-1)^n}{(1-2n)^2 (2n+1)(2n+3)^2}}. $$
                Partial fraction decomposition and telescopic series convert the RHS into
                $$ frac{1}{2}sum_{ngeq 0}frac{(-1)^n}{2n+1} = frac{1}{2}int_{0}^{1}sum_{ngeq 0}(-1)^n x^{2n},dx = frac{1}{2}int_{0}^{1}frac{dx}{1+x^2}=frac{pi}{8}.$$
                As a by-product, we got a nice, rapidly convergent representation for $pi$ (eight times the blue one).





                Don't like the Legendre base of $L^2(0,1)$? Fine, let us go with the Chebyshev one (with respect to a different inner product). Our integral is
                $$ int_{0}^{1}x(1-x)frac{dx}{sqrt{x(1-x)}} $$
                and the orthogonality relation for the Chebyshev base is
                $$ int_{0}^{1}T_m(2x-1)T_n(2x-1)frac{dx}{sqrt{x(1-x)}}=frac{pi}{2}delta(m,n)(1+delta(m)). $$
                Since $x(1-x)$ decomposes as $color{blue}{frac{1}{8}}T_0(2x-1)-frac{1}{8}T_2(2x-1)$, the value of our integral is $frac{pi}{8}$.






                share|cite|improve this answer











                $endgroup$
















                  5












                  5








                  5





                  $begingroup$

                  Another technique just for fun (and in the meanwhile, happy new year!). We have
                  $$ frac{1}{sqrt{1-x}}stackrel{L^2(0,1)}{=}2sum_{ngeq 1}P_n(2x-1) $$
                  hence by Bonnet's recursion formulas and symmetry
                  $$ sqrt{1-x}=2sum_{ngeq 0}frac{1}{(1-2n)(2n+3)}P_n(2x-1) $$
                  $$ sqrt{x}=2sum_{ngeq 0}frac{(-1)^n}{(1-2n)(2n+3)}P_n(2x-1) $$
                  and these FL expansions lead to
                  $$ int_{0}^{1}sqrt{x(1-x)},dx = color{blue}{4sum_{ngeq 0}frac{(-1)^n}{(1-2n)^2 (2n+1)(2n+3)^2}}. $$
                  Partial fraction decomposition and telescopic series convert the RHS into
                  $$ frac{1}{2}sum_{ngeq 0}frac{(-1)^n}{2n+1} = frac{1}{2}int_{0}^{1}sum_{ngeq 0}(-1)^n x^{2n},dx = frac{1}{2}int_{0}^{1}frac{dx}{1+x^2}=frac{pi}{8}.$$
                  As a by-product, we got a nice, rapidly convergent representation for $pi$ (eight times the blue one).





                  Don't like the Legendre base of $L^2(0,1)$? Fine, let us go with the Chebyshev one (with respect to a different inner product). Our integral is
                  $$ int_{0}^{1}x(1-x)frac{dx}{sqrt{x(1-x)}} $$
                  and the orthogonality relation for the Chebyshev base is
                  $$ int_{0}^{1}T_m(2x-1)T_n(2x-1)frac{dx}{sqrt{x(1-x)}}=frac{pi}{2}delta(m,n)(1+delta(m)). $$
                  Since $x(1-x)$ decomposes as $color{blue}{frac{1}{8}}T_0(2x-1)-frac{1}{8}T_2(2x-1)$, the value of our integral is $frac{pi}{8}$.






                  share|cite|improve this answer











                  $endgroup$



                  Another technique just for fun (and in the meanwhile, happy new year!). We have
                  $$ frac{1}{sqrt{1-x}}stackrel{L^2(0,1)}{=}2sum_{ngeq 1}P_n(2x-1) $$
                  hence by Bonnet's recursion formulas and symmetry
                  $$ sqrt{1-x}=2sum_{ngeq 0}frac{1}{(1-2n)(2n+3)}P_n(2x-1) $$
                  $$ sqrt{x}=2sum_{ngeq 0}frac{(-1)^n}{(1-2n)(2n+3)}P_n(2x-1) $$
                  and these FL expansions lead to
                  $$ int_{0}^{1}sqrt{x(1-x)},dx = color{blue}{4sum_{ngeq 0}frac{(-1)^n}{(1-2n)^2 (2n+1)(2n+3)^2}}. $$
                  Partial fraction decomposition and telescopic series convert the RHS into
                  $$ frac{1}{2}sum_{ngeq 0}frac{(-1)^n}{2n+1} = frac{1}{2}int_{0}^{1}sum_{ngeq 0}(-1)^n x^{2n},dx = frac{1}{2}int_{0}^{1}frac{dx}{1+x^2}=frac{pi}{8}.$$
                  As a by-product, we got a nice, rapidly convergent representation for $pi$ (eight times the blue one).





                  Don't like the Legendre base of $L^2(0,1)$? Fine, let us go with the Chebyshev one (with respect to a different inner product). Our integral is
                  $$ int_{0}^{1}x(1-x)frac{dx}{sqrt{x(1-x)}} $$
                  and the orthogonality relation for the Chebyshev base is
                  $$ int_{0}^{1}T_m(2x-1)T_n(2x-1)frac{dx}{sqrt{x(1-x)}}=frac{pi}{2}delta(m,n)(1+delta(m)). $$
                  Since $x(1-x)$ decomposes as $color{blue}{frac{1}{8}}T_0(2x-1)-frac{1}{8}T_2(2x-1)$, the value of our integral is $frac{pi}{8}$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 2 at 1:00

























                  answered Dec 31 '18 at 23:54









                  Jack D'AurizioJack D'Aurizio

                  290k33282664




                  290k33282664























                      4












                      $begingroup$

                      J.G. has the elementary method down. If you see a $1-x^2$ term inside your integrand, it might be wise to give a trig substitution a try. In this case, letting $x=sin^2theta$ works out beautifully.



                      There’s another less elementary way by utilizing the beta function and the Gamma function. Let me know if you need a proof (I proudly have an elementary proof of it).




                      Beta Function:$$operatorname{B}left(m,nright)=intlimits_0^1mathrm dx,x^{m-1}(1-x)^{n-1}=frac {Gamma(m)Gamma(n)}{Gamma(m+n)}$$




                      The integral under question is then simply$$begin{align*}mathfrak{I} & =operatorname{B}left(frac 32,frac 32right)\ & =frac {1}{2}left(frac {sqrt{pi}}2right)^2end{align*}$$
                      Thus$$intlimits_0^1mathrm dx, sqrt{x(1-x)}color{blue}{=frac {pi}8}$$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        What's your proof?
                        $endgroup$
                        – Larry
                        Dec 31 '18 at 20:00






                      • 1




                        $begingroup$
                        @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 1 at 23:36










                      • $begingroup$
                        Ok, Frank said he has a elementary proof. I was curious about that
                        $endgroup$
                        – Larry
                        Jan 2 at 0:36










                      • $begingroup$
                        @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 2 at 1:12










                      • $begingroup$
                        @Larry It’s just integration by parts.
                        $endgroup$
                        – Frank W.
                        Jan 2 at 1:23
















                      4












                      $begingroup$

                      J.G. has the elementary method down. If you see a $1-x^2$ term inside your integrand, it might be wise to give a trig substitution a try. In this case, letting $x=sin^2theta$ works out beautifully.



                      There’s another less elementary way by utilizing the beta function and the Gamma function. Let me know if you need a proof (I proudly have an elementary proof of it).




                      Beta Function:$$operatorname{B}left(m,nright)=intlimits_0^1mathrm dx,x^{m-1}(1-x)^{n-1}=frac {Gamma(m)Gamma(n)}{Gamma(m+n)}$$




                      The integral under question is then simply$$begin{align*}mathfrak{I} & =operatorname{B}left(frac 32,frac 32right)\ & =frac {1}{2}left(frac {sqrt{pi}}2right)^2end{align*}$$
                      Thus$$intlimits_0^1mathrm dx, sqrt{x(1-x)}color{blue}{=frac {pi}8}$$






                      share|cite|improve this answer











                      $endgroup$













                      • $begingroup$
                        What's your proof?
                        $endgroup$
                        – Larry
                        Dec 31 '18 at 20:00






                      • 1




                        $begingroup$
                        @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 1 at 23:36










                      • $begingroup$
                        Ok, Frank said he has a elementary proof. I was curious about that
                        $endgroup$
                        – Larry
                        Jan 2 at 0:36










                      • $begingroup$
                        @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 2 at 1:12










                      • $begingroup$
                        @Larry It’s just integration by parts.
                        $endgroup$
                        – Frank W.
                        Jan 2 at 1:23














                      4












                      4








                      4





                      $begingroup$

                      J.G. has the elementary method down. If you see a $1-x^2$ term inside your integrand, it might be wise to give a trig substitution a try. In this case, letting $x=sin^2theta$ works out beautifully.



                      There’s another less elementary way by utilizing the beta function and the Gamma function. Let me know if you need a proof (I proudly have an elementary proof of it).




                      Beta Function:$$operatorname{B}left(m,nright)=intlimits_0^1mathrm dx,x^{m-1}(1-x)^{n-1}=frac {Gamma(m)Gamma(n)}{Gamma(m+n)}$$




                      The integral under question is then simply$$begin{align*}mathfrak{I} & =operatorname{B}left(frac 32,frac 32right)\ & =frac {1}{2}left(frac {sqrt{pi}}2right)^2end{align*}$$
                      Thus$$intlimits_0^1mathrm dx, sqrt{x(1-x)}color{blue}{=frac {pi}8}$$






                      share|cite|improve this answer











                      $endgroup$



                      J.G. has the elementary method down. If you see a $1-x^2$ term inside your integrand, it might be wise to give a trig substitution a try. In this case, letting $x=sin^2theta$ works out beautifully.



                      There’s another less elementary way by utilizing the beta function and the Gamma function. Let me know if you need a proof (I proudly have an elementary proof of it).




                      Beta Function:$$operatorname{B}left(m,nright)=intlimits_0^1mathrm dx,x^{m-1}(1-x)^{n-1}=frac {Gamma(m)Gamma(n)}{Gamma(m+n)}$$




                      The integral under question is then simply$$begin{align*}mathfrak{I} & =operatorname{B}left(frac 32,frac 32right)\ & =frac {1}{2}left(frac {sqrt{pi}}2right)^2end{align*}$$
                      Thus$$intlimits_0^1mathrm dx, sqrt{x(1-x)}color{blue}{=frac {pi}8}$$







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Dec 31 '18 at 18:49

























                      answered Dec 31 '18 at 18:40









                      Frank W.Frank W.

                      3,7351321




                      3,7351321












                      • $begingroup$
                        What's your proof?
                        $endgroup$
                        – Larry
                        Dec 31 '18 at 20:00






                      • 1




                        $begingroup$
                        @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 1 at 23:36










                      • $begingroup$
                        Ok, Frank said he has a elementary proof. I was curious about that
                        $endgroup$
                        – Larry
                        Jan 2 at 0:36










                      • $begingroup$
                        @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 2 at 1:12










                      • $begingroup$
                        @Larry It’s just integration by parts.
                        $endgroup$
                        – Frank W.
                        Jan 2 at 1:23


















                      • $begingroup$
                        What's your proof?
                        $endgroup$
                        – Larry
                        Dec 31 '18 at 20:00






                      • 1




                        $begingroup$
                        @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 1 at 23:36










                      • $begingroup$
                        Ok, Frank said he has a elementary proof. I was curious about that
                        $endgroup$
                        – Larry
                        Jan 2 at 0:36










                      • $begingroup$
                        @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
                        $endgroup$
                        – Jack D'Aurizio
                        Jan 2 at 1:12










                      • $begingroup$
                        @Larry It’s just integration by parts.
                        $endgroup$
                        – Frank W.
                        Jan 2 at 1:23
















                      $begingroup$
                      What's your proof?
                      $endgroup$
                      – Larry
                      Dec 31 '18 at 20:00




                      $begingroup$
                      What's your proof?
                      $endgroup$
                      – Larry
                      Dec 31 '18 at 20:00




                      1




                      1




                      $begingroup$
                      @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
                      $endgroup$
                      – Jack D'Aurizio
                      Jan 1 at 23:36




                      $begingroup$
                      @Larry: the fact that $int_{0}^{1}x^{1/2}(1-x)^{1/2},dx$ is a value of the Beta function, I guess.
                      $endgroup$
                      – Jack D'Aurizio
                      Jan 1 at 23:36












                      $begingroup$
                      Ok, Frank said he has a elementary proof. I was curious about that
                      $endgroup$
                      – Larry
                      Jan 2 at 0:36




                      $begingroup$
                      Ok, Frank said he has a elementary proof. I was curious about that
                      $endgroup$
                      – Larry
                      Jan 2 at 0:36












                      $begingroup$
                      @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
                      $endgroup$
                      – Jack D'Aurizio
                      Jan 2 at 1:12




                      $begingroup$
                      @Larry: we already have one above: $int_{0}^{1}sqrt{x(1-x)},dx$ is the area of a half-circle centered at $(1/2,0)$ through the origin.
                      $endgroup$
                      – Jack D'Aurizio
                      Jan 2 at 1:12












                      $begingroup$
                      @Larry It’s just integration by parts.
                      $endgroup$
                      – Frank W.
                      Jan 2 at 1:23




                      $begingroup$
                      @Larry It’s just integration by parts.
                      $endgroup$
                      – Frank W.
                      Jan 2 at 1:23


















                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3057924%2fhow-to-show-that-int-01-sqrtx-sqrt1-x-mathrm-dx-frac-pi8%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna