Differentiate $sin^{-1}left(frac {sin x + cos x}{sqrt{2}}right)$ with respect to $x$












1












$begingroup$



Differentiate $$sin^{-1}left(frac {sin x + cos x}{sqrt{2}}right)$$ with respect to $x$.




I started like this: Consider $$frac {sin x + cos x}{sqrt{2}}$$, substitute $cos x$ as $sin left(frac {pi}{2} - xright)$, and proceed with the simplification. Finally I am getting it as $cos left(x - frac {pi}{4}right)$. After this I could not proceed. Any help would be appreciated. Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    @user222031 I also tried like that but I ended up with $frac {cos x - sinx}{sqrt (1 - sin 2x)}$. How to proceed after this?
    $endgroup$
    – Sahana
    May 5 '15 at 13:28










  • $begingroup$
    $sin x cos pi/4 + cos x sin pi/4$
    $endgroup$
    – Mann
    May 5 '15 at 13:29












  • $begingroup$
    @mann Where to use this? Sorry I don't get it
    $endgroup$
    – Sahana
    May 5 '15 at 13:30










  • $begingroup$
    Look the answers below, you'd see it.
    $endgroup$
    – Mann
    May 5 '15 at 13:31
















1












$begingroup$



Differentiate $$sin^{-1}left(frac {sin x + cos x}{sqrt{2}}right)$$ with respect to $x$.




I started like this: Consider $$frac {sin x + cos x}{sqrt{2}}$$, substitute $cos x$ as $sin left(frac {pi}{2} - xright)$, and proceed with the simplification. Finally I am getting it as $cos left(x - frac {pi}{4}right)$. After this I could not proceed. Any help would be appreciated. Thanks in advance!










share|cite|improve this question











$endgroup$












  • $begingroup$
    @user222031 I also tried like that but I ended up with $frac {cos x - sinx}{sqrt (1 - sin 2x)}$. How to proceed after this?
    $endgroup$
    – Sahana
    May 5 '15 at 13:28










  • $begingroup$
    $sin x cos pi/4 + cos x sin pi/4$
    $endgroup$
    – Mann
    May 5 '15 at 13:29












  • $begingroup$
    @mann Where to use this? Sorry I don't get it
    $endgroup$
    – Sahana
    May 5 '15 at 13:30










  • $begingroup$
    Look the answers below, you'd see it.
    $endgroup$
    – Mann
    May 5 '15 at 13:31














1












1








1


1



$begingroup$



Differentiate $$sin^{-1}left(frac {sin x + cos x}{sqrt{2}}right)$$ with respect to $x$.




I started like this: Consider $$frac {sin x + cos x}{sqrt{2}}$$, substitute $cos x$ as $sin left(frac {pi}{2} - xright)$, and proceed with the simplification. Finally I am getting it as $cos left(x - frac {pi}{4}right)$. After this I could not proceed. Any help would be appreciated. Thanks in advance!










share|cite|improve this question











$endgroup$





Differentiate $$sin^{-1}left(frac {sin x + cos x}{sqrt{2}}right)$$ with respect to $x$.




I started like this: Consider $$frac {sin x + cos x}{sqrt{2}}$$, substitute $cos x$ as $sin left(frac {pi}{2} - xright)$, and proceed with the simplification. Finally I am getting it as $cos left(x - frac {pi}{4}right)$. After this I could not proceed. Any help would be appreciated. Thanks in advance!







calculus derivatives






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 5 '15 at 13:30









Travis

63.7k769151




63.7k769151










asked May 5 '15 at 13:21









SahanaSahana

2416




2416












  • $begingroup$
    @user222031 I also tried like that but I ended up with $frac {cos x - sinx}{sqrt (1 - sin 2x)}$. How to proceed after this?
    $endgroup$
    – Sahana
    May 5 '15 at 13:28










  • $begingroup$
    $sin x cos pi/4 + cos x sin pi/4$
    $endgroup$
    – Mann
    May 5 '15 at 13:29












  • $begingroup$
    @mann Where to use this? Sorry I don't get it
    $endgroup$
    – Sahana
    May 5 '15 at 13:30










  • $begingroup$
    Look the answers below, you'd see it.
    $endgroup$
    – Mann
    May 5 '15 at 13:31


















  • $begingroup$
    @user222031 I also tried like that but I ended up with $frac {cos x - sinx}{sqrt (1 - sin 2x)}$. How to proceed after this?
    $endgroup$
    – Sahana
    May 5 '15 at 13:28










  • $begingroup$
    $sin x cos pi/4 + cos x sin pi/4$
    $endgroup$
    – Mann
    May 5 '15 at 13:29












  • $begingroup$
    @mann Where to use this? Sorry I don't get it
    $endgroup$
    – Sahana
    May 5 '15 at 13:30










  • $begingroup$
    Look the answers below, you'd see it.
    $endgroup$
    – Mann
    May 5 '15 at 13:31
















$begingroup$
@user222031 I also tried like that but I ended up with $frac {cos x - sinx}{sqrt (1 - sin 2x)}$. How to proceed after this?
$endgroup$
– Sahana
May 5 '15 at 13:28




$begingroup$
@user222031 I also tried like that but I ended up with $frac {cos x - sinx}{sqrt (1 - sin 2x)}$. How to proceed after this?
$endgroup$
– Sahana
May 5 '15 at 13:28












$begingroup$
$sin x cos pi/4 + cos x sin pi/4$
$endgroup$
– Mann
May 5 '15 at 13:29






$begingroup$
$sin x cos pi/4 + cos x sin pi/4$
$endgroup$
– Mann
May 5 '15 at 13:29














$begingroup$
@mann Where to use this? Sorry I don't get it
$endgroup$
– Sahana
May 5 '15 at 13:30




$begingroup$
@mann Where to use this? Sorry I don't get it
$endgroup$
– Sahana
May 5 '15 at 13:30












$begingroup$
Look the answers below, you'd see it.
$endgroup$
– Mann
May 5 '15 at 13:31




$begingroup$
Look the answers below, you'd see it.
$endgroup$
– Mann
May 5 '15 at 13:31










3 Answers
3






active

oldest

votes


















5












$begingroup$

Hint The angle sum rule for $sin$ is
$$sin(x + y) = sin x cos y + cos x sin y.$$




Additional hint In particular, if we take $y = frac{pi}{4}$ and rearrange, we get $$sin x + cos x = sqrt{2} sinleft(x + frac{pi}{4}right).$$







share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    It's better to rewrite
    $$
    frac{1}{sqrt{2}}(sin x+cos x)=sin(x+pi/4)
    $$
    and then use the chain rule:
    $$
    f(x)=arcsinsinBigl(x+frac{pi}{4}Bigr)
    $$
    so
    $$
    f'(x)=frac{1}{sqrt{1-sin^2(x+pi/4)}}cosBigl(x+frac{pi}{4}Bigr)
    =dots
    $$
    (Beware of the square root!)




    $f'(x)=dfrac{cos(x+pi/4)}{|cos(x+pi/4)|}$

    so the derivative is $1$ where $cos(x+pi/4)>0$ and $-1$ where $cos(x+pi/4)<0$; the function is not differentiable where $cos(x+pi/4)=0$.







    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
      $endgroup$
      – Sahana
      May 5 '15 at 13:33










    • $begingroup$
      @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
      $endgroup$
      – egreg
      May 5 '15 at 13:34












    • $begingroup$
      BEWARE OF THE SQUARE ROOT.
      $endgroup$
      – Mann
      May 5 '15 at 13:35










    • $begingroup$
      If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
      $endgroup$
      – Sahana
      May 5 '15 at 13:38










    • $begingroup$
      Still no. Greg final expression is not always 1.
      $endgroup$
      – Mann
      May 5 '15 at 13:40



















    0












    $begingroup$

    An alternative approach is to use Implicit Differentiation:



    begin{equation}
    y = arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) rightarrow sin(y) = frac{sin(x) + cos(x)}{sqrt{2}}
    end{equation}



    Now differentiate with respect to '$x$':



    begin{align}
    frac{d}{dx}left[sin(y) right] &= frac{d}{dx}left[frac{sin(x) + cos(x)}{sqrt{2}} right] \
    cos(y)frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}} \
    frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}cos(y)}
    end{align}



    Thus:



    begin{equation}
    frac{dy}{dx} = frac{d}{dx}left[arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) right] = frac{cos(x) - sin(x)}{sqrt{2}cosleft(arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}}right) right)}
    end{equation}



    Here this method is unnecessarily complicated in comparison to those already presented. It is however good to know if an identity is either unknown.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1268153%2fdifferentiate-sin-1-left-frac-sin-x-cos-x-sqrt2-right-with-res%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Hint The angle sum rule for $sin$ is
      $$sin(x + y) = sin x cos y + cos x sin y.$$




      Additional hint In particular, if we take $y = frac{pi}{4}$ and rearrange, we get $$sin x + cos x = sqrt{2} sinleft(x + frac{pi}{4}right).$$







      share|cite|improve this answer









      $endgroup$


















        5












        $begingroup$

        Hint The angle sum rule for $sin$ is
        $$sin(x + y) = sin x cos y + cos x sin y.$$




        Additional hint In particular, if we take $y = frac{pi}{4}$ and rearrange, we get $$sin x + cos x = sqrt{2} sinleft(x + frac{pi}{4}right).$$







        share|cite|improve this answer









        $endgroup$
















          5












          5








          5





          $begingroup$

          Hint The angle sum rule for $sin$ is
          $$sin(x + y) = sin x cos y + cos x sin y.$$




          Additional hint In particular, if we take $y = frac{pi}{4}$ and rearrange, we get $$sin x + cos x = sqrt{2} sinleft(x + frac{pi}{4}right).$$







          share|cite|improve this answer









          $endgroup$



          Hint The angle sum rule for $sin$ is
          $$sin(x + y) = sin x cos y + cos x sin y.$$




          Additional hint In particular, if we take $y = frac{pi}{4}$ and rearrange, we get $$sin x + cos x = sqrt{2} sinleft(x + frac{pi}{4}right).$$








          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered May 5 '15 at 13:27









          TravisTravis

          63.7k769151




          63.7k769151























              2












              $begingroup$

              It's better to rewrite
              $$
              frac{1}{sqrt{2}}(sin x+cos x)=sin(x+pi/4)
              $$
              and then use the chain rule:
              $$
              f(x)=arcsinsinBigl(x+frac{pi}{4}Bigr)
              $$
              so
              $$
              f'(x)=frac{1}{sqrt{1-sin^2(x+pi/4)}}cosBigl(x+frac{pi}{4}Bigr)
              =dots
              $$
              (Beware of the square root!)




              $f'(x)=dfrac{cos(x+pi/4)}{|cos(x+pi/4)|}$

              so the derivative is $1$ where $cos(x+pi/4)>0$ and $-1$ where $cos(x+pi/4)<0$; the function is not differentiable where $cos(x+pi/4)=0$.







              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
                $endgroup$
                – Sahana
                May 5 '15 at 13:33










              • $begingroup$
                @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
                $endgroup$
                – egreg
                May 5 '15 at 13:34












              • $begingroup$
                BEWARE OF THE SQUARE ROOT.
                $endgroup$
                – Mann
                May 5 '15 at 13:35










              • $begingroup$
                If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
                $endgroup$
                – Sahana
                May 5 '15 at 13:38










              • $begingroup$
                Still no. Greg final expression is not always 1.
                $endgroup$
                – Mann
                May 5 '15 at 13:40
















              2












              $begingroup$

              It's better to rewrite
              $$
              frac{1}{sqrt{2}}(sin x+cos x)=sin(x+pi/4)
              $$
              and then use the chain rule:
              $$
              f(x)=arcsinsinBigl(x+frac{pi}{4}Bigr)
              $$
              so
              $$
              f'(x)=frac{1}{sqrt{1-sin^2(x+pi/4)}}cosBigl(x+frac{pi}{4}Bigr)
              =dots
              $$
              (Beware of the square root!)




              $f'(x)=dfrac{cos(x+pi/4)}{|cos(x+pi/4)|}$

              so the derivative is $1$ where $cos(x+pi/4)>0$ and $-1$ where $cos(x+pi/4)<0$; the function is not differentiable where $cos(x+pi/4)=0$.







              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
                $endgroup$
                – Sahana
                May 5 '15 at 13:33










              • $begingroup$
                @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
                $endgroup$
                – egreg
                May 5 '15 at 13:34












              • $begingroup$
                BEWARE OF THE SQUARE ROOT.
                $endgroup$
                – Mann
                May 5 '15 at 13:35










              • $begingroup$
                If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
                $endgroup$
                – Sahana
                May 5 '15 at 13:38










              • $begingroup$
                Still no. Greg final expression is not always 1.
                $endgroup$
                – Mann
                May 5 '15 at 13:40














              2












              2








              2





              $begingroup$

              It's better to rewrite
              $$
              frac{1}{sqrt{2}}(sin x+cos x)=sin(x+pi/4)
              $$
              and then use the chain rule:
              $$
              f(x)=arcsinsinBigl(x+frac{pi}{4}Bigr)
              $$
              so
              $$
              f'(x)=frac{1}{sqrt{1-sin^2(x+pi/4)}}cosBigl(x+frac{pi}{4}Bigr)
              =dots
              $$
              (Beware of the square root!)




              $f'(x)=dfrac{cos(x+pi/4)}{|cos(x+pi/4)|}$

              so the derivative is $1$ where $cos(x+pi/4)>0$ and $-1$ where $cos(x+pi/4)<0$; the function is not differentiable where $cos(x+pi/4)=0$.







              share|cite|improve this answer











              $endgroup$



              It's better to rewrite
              $$
              frac{1}{sqrt{2}}(sin x+cos x)=sin(x+pi/4)
              $$
              and then use the chain rule:
              $$
              f(x)=arcsinsinBigl(x+frac{pi}{4}Bigr)
              $$
              so
              $$
              f'(x)=frac{1}{sqrt{1-sin^2(x+pi/4)}}cosBigl(x+frac{pi}{4}Bigr)
              =dots
              $$
              (Beware of the square root!)




              $f'(x)=dfrac{cos(x+pi/4)}{|cos(x+pi/4)|}$

              so the derivative is $1$ where $cos(x+pi/4)>0$ and $-1$ where $cos(x+pi/4)<0$; the function is not differentiable where $cos(x+pi/4)=0$.








              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited May 5 '15 at 13:45

























              answered May 5 '15 at 13:28









              egregegreg

              184k1486206




              184k1486206












              • $begingroup$
                Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
                $endgroup$
                – Sahana
                May 5 '15 at 13:33










              • $begingroup$
                @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
                $endgroup$
                – egreg
                May 5 '15 at 13:34












              • $begingroup$
                BEWARE OF THE SQUARE ROOT.
                $endgroup$
                – Mann
                May 5 '15 at 13:35










              • $begingroup$
                If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
                $endgroup$
                – Sahana
                May 5 '15 at 13:38










              • $begingroup$
                Still no. Greg final expression is not always 1.
                $endgroup$
                – Mann
                May 5 '15 at 13:40


















              • $begingroup$
                Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
                $endgroup$
                – Sahana
                May 5 '15 at 13:33










              • $begingroup$
                @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
                $endgroup$
                – egreg
                May 5 '15 at 13:34












              • $begingroup$
                BEWARE OF THE SQUARE ROOT.
                $endgroup$
                – Mann
                May 5 '15 at 13:35










              • $begingroup$
                If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
                $endgroup$
                – Sahana
                May 5 '15 at 13:38










              • $begingroup$
                Still no. Greg final expression is not always 1.
                $endgroup$
                – Mann
                May 5 '15 at 13:40
















              $begingroup$
              Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
              $endgroup$
              – Sahana
              May 5 '15 at 13:33




              $begingroup$
              Then $sin^{-1} Sin (x + frac {pi}{4})$ is simply $x + frac {pi}{4}$ and if we differentiate it we will get 1. Am I right?
              $endgroup$
              – Sahana
              May 5 '15 at 13:33












              $begingroup$
              @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
              $endgroup$
              – egreg
              May 5 '15 at 13:34






              $begingroup$
              @Sahana The equality $arcsinsinalpha=alpha$ is generally false. For instance, $arcsinsinpi=arcsin 0=0nepi$.
              $endgroup$
              – egreg
              May 5 '15 at 13:34














              $begingroup$
              BEWARE OF THE SQUARE ROOT.
              $endgroup$
              – Mann
              May 5 '15 at 13:35




              $begingroup$
              BEWARE OF THE SQUARE ROOT.
              $endgroup$
              – Mann
              May 5 '15 at 13:35












              $begingroup$
              If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
              $endgroup$
              – Sahana
              May 5 '15 at 13:38




              $begingroup$
              If I simplify @egreg expression also the final ans is coming as $1$. So I think in this case $sin^{-1}(sin x) = x$. is it ok?
              $endgroup$
              – Sahana
              May 5 '15 at 13:38












              $begingroup$
              Still no. Greg final expression is not always 1.
              $endgroup$
              – Mann
              May 5 '15 at 13:40




              $begingroup$
              Still no. Greg final expression is not always 1.
              $endgroup$
              – Mann
              May 5 '15 at 13:40











              0












              $begingroup$

              An alternative approach is to use Implicit Differentiation:



              begin{equation}
              y = arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) rightarrow sin(y) = frac{sin(x) + cos(x)}{sqrt{2}}
              end{equation}



              Now differentiate with respect to '$x$':



              begin{align}
              frac{d}{dx}left[sin(y) right] &= frac{d}{dx}left[frac{sin(x) + cos(x)}{sqrt{2}} right] \
              cos(y)frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}} \
              frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}cos(y)}
              end{align}



              Thus:



              begin{equation}
              frac{dy}{dx} = frac{d}{dx}left[arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) right] = frac{cos(x) - sin(x)}{sqrt{2}cosleft(arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}}right) right)}
              end{equation}



              Here this method is unnecessarily complicated in comparison to those already presented. It is however good to know if an identity is either unknown.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                An alternative approach is to use Implicit Differentiation:



                begin{equation}
                y = arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) rightarrow sin(y) = frac{sin(x) + cos(x)}{sqrt{2}}
                end{equation}



                Now differentiate with respect to '$x$':



                begin{align}
                frac{d}{dx}left[sin(y) right] &= frac{d}{dx}left[frac{sin(x) + cos(x)}{sqrt{2}} right] \
                cos(y)frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}} \
                frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}cos(y)}
                end{align}



                Thus:



                begin{equation}
                frac{dy}{dx} = frac{d}{dx}left[arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) right] = frac{cos(x) - sin(x)}{sqrt{2}cosleft(arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}}right) right)}
                end{equation}



                Here this method is unnecessarily complicated in comparison to those already presented. It is however good to know if an identity is either unknown.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  An alternative approach is to use Implicit Differentiation:



                  begin{equation}
                  y = arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) rightarrow sin(y) = frac{sin(x) + cos(x)}{sqrt{2}}
                  end{equation}



                  Now differentiate with respect to '$x$':



                  begin{align}
                  frac{d}{dx}left[sin(y) right] &= frac{d}{dx}left[frac{sin(x) + cos(x)}{sqrt{2}} right] \
                  cos(y)frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}} \
                  frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}cos(y)}
                  end{align}



                  Thus:



                  begin{equation}
                  frac{dy}{dx} = frac{d}{dx}left[arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) right] = frac{cos(x) - sin(x)}{sqrt{2}cosleft(arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}}right) right)}
                  end{equation}



                  Here this method is unnecessarily complicated in comparison to those already presented. It is however good to know if an identity is either unknown.






                  share|cite|improve this answer









                  $endgroup$



                  An alternative approach is to use Implicit Differentiation:



                  begin{equation}
                  y = arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) rightarrow sin(y) = frac{sin(x) + cos(x)}{sqrt{2}}
                  end{equation}



                  Now differentiate with respect to '$x$':



                  begin{align}
                  frac{d}{dx}left[sin(y) right] &= frac{d}{dx}left[frac{sin(x) + cos(x)}{sqrt{2}} right] \
                  cos(y)frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}} \
                  frac{dy}{dx} &= frac{cos(x) - sin(x)}{sqrt{2}cos(y)}
                  end{align}



                  Thus:



                  begin{equation}
                  frac{dy}{dx} = frac{d}{dx}left[arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}} right) right] = frac{cos(x) - sin(x)}{sqrt{2}cosleft(arcsinleft(frac{sin(x) + cos(x)}{sqrt{2}}right) right)}
                  end{equation}



                  Here this method is unnecessarily complicated in comparison to those already presented. It is however good to know if an identity is either unknown.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 6 at 12:19









                  DavidGDavidG

                  1




                  1






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1268153%2fdifferentiate-sin-1-left-frac-sin-x-cos-x-sqrt2-right-with-res%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Cabo Verde

                      Gyllenstierna